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ABSTRACT

NEURAL-NETWORK QUANTUM STATES FOR A
TWO-LEG BOSE-HUBBARD LADDER UNDER A

SYNTHETIC MAGNETIC FIELD

Kadir Çeven

M.S. in Physics

Advisor: Mehmet Özgür Oktel

Co-Advisor: Ahmet Keleş

July 2023

This thesis explores novel quantum phases in a two-leg Bose-Hubbard ladder,

achieved using neural-network quantum states. The remarkable potential of quan-

tum gas systems for analog quantum simulation of strongly correlated quantum

matter is well-known; however, it is equally evident that new theoretical bases

are urgently required to comprehend their intricacies fully. While simple one-

dimensional models have served as valuable test cases, ladder models naturally

emerge as the next step, enabling studying higher dimensional effects, including

gauge fields. Utilizing the paper [Çeven et al., Phys. Rev. A 106, 063320 (2022)],

this thesis investigates the application of neural-network quantum states to a two-

leg Bose-Hubbard ladder in the presence of strong synthetic magnetic fields. This

paper showcased the reliability of variational neural networks, such as restricted

Boltzmann machines and feedforward neural networks, in accurately predicting

the phase diagram exhibiting superfluid-Mott insulator phase transition under

strong interaction. Moreover, the neural networks successfully identified other

intriguing many-body phases in the weakly interacting regime. These exciting

findings firmly designate a two-leg Bose-Hubbard ladder with magnetic flux as

an ideal testbed for advancing the field of neural-network quantum states. By

expanding these previous results, this thesis contains various essential aspects,

including a comprehensive introduction and analysis of the vanilla Bose-Hubbard

model and the two-leg Bose-Hubbard ladder under magnetic flux, an in-depth

overview of neural-network quantum states tailored for bosonic systems, and a

thorough presentation and analysis of the obtained results using neural-network

quantum states for these two Bose-Hubbard models.

Keywords: Bose-Hubbard model, two-leg ladder flux system, superfluid phase,
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Mott insulator phase, synthetic magnetic field, neural-network quantum states,

machine learning, artificial neural networks, restricted Boltzmann machine, feed-

forward neural network.



ÖZET

SENTETİK MANYETİK AKI ALTINDAKİ
İKİ-BACAKLI BOSE-HUBBARD MERDİVENİ İÇİN

SİNİR-AĞ KUANTUM DURUMLARI

Kadir Çeven

Fizik, Yüksek Lisans

Tez Danışmanı: Mehmet Özgür Oktel

İkinci Tez Danışmanı: Ahmet Keleş

Temmuz 2023

Bu tez sinir-ağ kuantum durumlarını kullanarak iki-bacaklı Bose-Hubbard mer-

diveninde özgün kuantum fazlarını araştırmaktadır. Kuantum gaz sistem-

lerinin, güçlü korelasyonlu kuantum maddelerinin analog kuantum simülasyonu

için olağanüstü potansiyeli iyi bilinmektedir; fakat aynı şekilde, bunların sebep

olduğu karmaşıklıkları tam olarak anlamak için yeni teorik temellere acil olarak

ihtiyaç duyulduğu açıktır. Basit bir boyutlu modeller önemli test durumları

olarak bilinirken, doğal olarak merdiven modelleri bir sonraki adım olarak ortaya

çıkmakta ve ayar alanları da dahil olmak üzere daha yüksek boyutlu etkilerin

incelenmesini sağlamaktadır. [Çeven et al., Phys. Rev. A 106, 063320 (2022)]

makalesinden istifade eden bu tez, güçlü sentetik manyetik alanlar varlığında

iki-bacaklı Bose-Hubbard merdivenine sinir-ağı kuantum durumlarının uygulan-

masını araştırmaktadır. Bu makale, kısıtlı Boltzmann makineleri ve ileri beslemeli

sinir ağları gibi varyasyonel sinir ağlarının, güçlü etkileşim altında süperakışkan-

Mott yalıtkanı faz geçişini gösteren faz diyagramını doğru bir şekilde tahmin

etmedeki güvenilirliğini gösterdi. Ayrıca, bu sinir ağları, zayıf etkileşimli rejimde

ortaya çıkan diğer ilginç çok parçacıklı fazları başarıyla buldu. Bu heyecan verici

tespitler, manyetik akılı iki-bacaklı Bose-Hubbard merdivenini sinir-ağ kuantum

durumları alanını ilerletmek için ideal bir test platformu olduğunu kesin bir şekilde

işaret etmektedir. Bu tez, önceki sonuçları geliştirerek, sıradan Bose-Hubbard

modeli ve manyetik akı altında iki-bacaklı Bose-Hubbard merdiveni hakkında

kapsamlı bir giriş ve analiz, bosonik sistemler için özel olarak tasarlanmış sinir-ağ

kuantum durumlarına derinlemesine bir genel bakışı ve bu her iki Bose-Hubbard

modeli için sinir-ağ kuantum durumlarını kullanılarak elde edilen sonuçların kap-

samlı bir sunumu ve analizini içeren çeşitli temel yönleri barındırmaktadır.
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Chapter 1

Introduction

Quantum simulation has become a powerful tool, enabling the exploration of

practical applications in quantum information and computation and the behav-

ior of strongly correlated quantum matter [1, 2]. These advancements have led

to significant progress in using quantum gas systems as analog quantum simula-

tion platforms, providing fresh insights into challenging problems in condensed

matter physics. In particular, these systems can potentially explain enigmatic

phenomena in superconducting cuprates, fractional quantum Hall systems, and

frustrated quantum magnets [3–6]. However, although pioneering cold-atom ex-

periments have explored low-energy quantum correlations, they have also empha-

sized the requirement for dependable theoretical frameworks capable of accurately

evaluating experimental outcomes [7].

To address this challenge, a successful approach involves investigating toy mod-

els in reduced-dimensional systems like two-leg ladders. These experimental se-

tups offer several advantages. First, they allow for deploying accurate theoretical

and numerical approaches developed for quasi-one-dimensional systems. Second,

they are large enough to exhibit complex many-body phases, such as vortex

and chiral phases in the superfluid state, similar to the phases observed in su-

perconductors under magnetic fields and the Mott insulator phase arising from

strong interactions [8, 9]. Two-leg ladder systems have been successfully realized
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in various cold-atom setups [10–17], including those with synthetic dimensions

[14, 18–20]. Their theoretical studies have significantly advanced alongside criti-

cal experimental progress [21–28]. By examining emerging numerical techniques

in these well-controlled toy systems, researchers can uncover their limitations

and contribute to the realization of quantum simulation in fully two-dimensional

systems. Moreover, this exploration aids in formulating new theoretical frame-

works that can effectively anticipate the fundamental principles governing the

underlying physical phenomena.

Among the most effective unbiased numerical methods for studying strongly

correlated matter, variational and projection Monte Carlo techniques are widely

used, particularly in high-dimensional systems. These techniques involve stochas-

tic minimization of variational wave functions derived from well-established phys-

ical principles, enabling the investigation of such models as the Hubbard, t−J ,

and Heisenberg models [29–32]. In 2017, Carleo and Troyer introduced a family

of wave functions derived from artificial neural networks, employing a variational

Monte-Carlo scheme inspired by the rapid advancements in machine learning

and artificial intelligence [33, 34]. Their groundbreaking work demonstrated that

these wave functions, referred to as the neural-network quantum states, have

the potential to approximate ground states and dynamics of strongly correlated

quantum systems. Remarkably, this approximation can be achieved with poly-

nomial resources within the exponential Hilbert space [33, 35]. Moreover, their

accuracy can be systematically enhanced, reaching a level of competitiveness

comparable to advanced techniques like tensor networks and projected entan-

gled pair states (PEPS). Follow-up studies revealed that neural-network quantum

states exhibit volume law entanglement and have expressive capabilities similar

to tensor-network quantum states [36–43]. The optimization of neural-network

quantum states can be efficiently achieved using established machine learning

and variational Monte-Carlo techniques. These optimization techniques tackle

fundamental obstacles linked to tensor networks, including the difficulty of ten-

sor contraction [44] and the exponential increase in the matrix product state

(MPS) bond dimension with the size of the transverse system [45–47]. The uti-

lization of neural-network quantum states has been effectively expanded to diverse

2



deep-learning architectures, demonstrating their utility in numerous problems in

condensed matter physics [48–53].

In this thesis, by drawing inspiration from the simultaneous advancements in

cold atomic systems and variational quantum Monte-Carlo simulations, the ex-

ploration of novel quantum phases in a two-leg Bose-Hubbard ladder under an ar-

tificial magnetic field is pursued using the neural-network quantum states. While

significant theoretical interest and recent experimental progress exist, the appli-

cation of neural networks in bosonic systems remains relatively limited. Several

investigations into the superfluid-Mott insulator transition in the vanilla Bose-

Hubbard models have been conducted, using restricted Boltzmann machines [54]

and feedforward neural networks [55, 56]. As previously done in [57], a particular

focus in this thesis has been placed on evaluating the efficiency of these approaches

in the presence of artificial magnetic fields, which brake time-reversal symmetry

and introduce frustration to the many-body system. Here, the primary objec-

tive is to contribute to investigating alternative numerical frameworks. Doing so

aims to enhance future studies focusing on synthetic magnetic fields in optical

lattice experiments. Moreover, an emphasis is placed on the two-leg flux ladder

system, which exhibits a remarkable diversity of many-body phases. This system

is presented as a candidate for future algorithmic developments within the field

of neural network studies, further expanding the potential of this prototypical

many-body system.

The organization of this thesis is as follows1:

Chapter 2 begins by introducing the vanilla Bose-Hubbard model, along with

its phases and symmetries. The model is then analyzed using both mean-field the-

ory and strong-coupling perturbation theory. Additionally, the chapter presents

a two-leg Bose-Hubbard ladder under magnetic flux, exploring its novel phases in

weakly interacting regimes through a mean-field approach [58]. The two-leg flux

ladder system is further studied using the Gutzwiller variational approach and

the strong-coupling expansion.

1Several chapters have been adapted from the paper [57].
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Chapter 3 provides an introduction to neural-network quantum states for

bosonic systems, focusing on two different ansatzes defined by distinct neural-

network architectures: a restricted Boltzmann machine and a feedforward neural

network. The chapter also delves into the measurement, sampling, and optimiza-

tion processes associated with these ansatzes, offering a detailed discussion.

Finally, Chapter 4 presents the results obtained with neural-network quantum

states for the two distinct Bose-Hubbard models. It concludes with a compre-

hensive analysis of these results, concluding the findings.

4



Chapter 2

Bose-Hubbard model

The Bose-Hubbard model, initially proposed by Gersch and Knollman in 1963

[59] and thoroughly analyzed to a much greater extent by Fisher et al. in 1989

[8], provides a framework to understand the physical behavior of spinless inter-

acting bosonic particles within a lattice structure. In this chapter, two distinct

Bose-Hubbard models are examined. The first model investigated is the vanilla

Bose-Hubbard model, which exhibits two well-known quantum phases: the su-

perfluid and Mott insulator. This model is analyzed using the mean-field theory

and strong-coupling expansion, employing second-order perturbation theory. Ad-

ditionally, the symmetries associated with this model are addressed. The second

model explored is the two-leg ladder Bose-Hubbard model, which exhibits three

novel superfluid phases under the influence of a synthetic magnetic flux in the

weakly interacting regime. Conversely, in the strong interaction regime, the su-

perfluid and Mott insulator phases still compete, and the resulting phase diagram

captures distinct re-entrant phase transitions beyond a critical value of the mag-

netic flux. In addition to the analytical methods mentioned earlier, the Gutzwiller

variational approach is employed to study this two-leg flux ladder system.
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2.1 Vanilla Bose-Hubbard model

The standard or, so to say, vanilla Bose-Hubbard model in absolute zero (T = 0)

can be investigated by the following Hamiltonian Ĥ:

Ĥ = −
∑
i,j

Ji,j

(
â†i âj + h.c.

)
+
U

2

Ns∑
i=1

n̂i(n̂i − 1)− µ
Ns∑
i=1

n̂i, (2.1)

where Ji,j is the matrix element of the hopping amplitude between the lattice

sites (i, j), which determines the boson mobility on the lattice, U is the on-site

interaction strength responsible for how attractive or repulsive the bosons can

be on the same lattice site, µ is the chemical potential, and Ns is the number

of lattice sites. Here, â†i and âi denote the bosonic creation and annihilation

operators at the lattice site i, and thus n̂i = â†i âi is the bosonic number operator

for the same site.

For convenience, the hopping in this model is generally considered to be be-

tween the nearest neighbors ⟨i, j⟩, so that the Hamiltonian in Eq. (2.1) transforms

into

Ĥ = −J
∑
⟨i,j⟩

(
â†i âj + h.c.

)
+
U

2

Ns∑
i=1

n̂i(n̂i − 1)− µ
Ns∑
i=1

n̂i, (2.2)

which is modelled in Fig. 2.1.

2.1.1 Mott insulator phase

In the atomic limit where the hopping terms are considered to be zero, the overall

Hamiltonian in Eq. (2.2) can be written by defining a local Hamiltonian ĥi =
U
2
n̂i(n̂i − 1)− µn̂i, as follows:

ĤMI =
Ns∑
i=1

ĥi, (2.3)

so that

ĥi |ψ⟩i = ϵ(ni) |ψ⟩i , (2.4)
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· · · · · ·

−J

U

µ µ

Figure 2.1: Schematic of the 1D Bose-Hubbard model. The rectangular box below
represents the particle reservoir for the system.

where ϵ(ni) := U
2
ni(ni − 1) − µni is the local ground-state energy for the lattice

site i and the |ψ⟩i is the ground state for the site i, which is independent of other

lattice sites. In such a limit, the total energy can be minimized with a uniform

distribution of bosons along the lattice because of the dominance of the on-site

interactions between the bosons. Such a phase is called the Mott insulator (MI)

phase. Thus, the overall ground state |ΨMI⟩ is

|ΨMI⟩ =
Ns⊗
i=1

1√
n0

(
â†i

)n0

|0⟩i =
Ns⊗
i=1

|n0⟩i = |n0 n0 . . . n0⟩ , (2.5)

where n0 is the uniform number of bosons in each site, which suggests that the

bosons are localized in real space but delocalized in the momentum space. This

ground state also leads to the ground-state energy E(N) equal to Nsϵ(n0) where

N = n0Ns is the total number of bosons.

Finding out how the choice of the on-site interaction strength U and the chem-

ical potential µ determines the value of n0 can be done by applying a parti-

cle or hole excitation to the system since there is a gap between the total en-

ergy E(N ± 1) with these excitations and the ground-state energy E(N), i.e.

E(N ± 1) ̸= E(N). Supposing µ > 0 and U > 0, for a hole excitation in the site
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i causes the following inequality:

ϵ(ni) ≥ ϵ(ni − 1) (2.6)

U

2
n0(n0 − 1)− µn0 ≥

U

2
(n0 − 1)(n0 − 2)− µ(n0 − 1), (2.7)

which results as
µ

U
≥ n0 − 1 . (2.8)

Similarly, a particle excitation in the site i leads to

ϵ(ni + 1) ≥ ϵ(ni), (2.9)

which gives out

n0 ≥
µ

U
. (2.10)

By combining Eqs. (2.8) and (2.10), it can be obtained that n0(µ, U) is re-

stricted by

n0(µ, U) =

n0 if n0 − 1 ≤ µ
U
≤ n0 and n0 ∈ Z+

0 if µ
U
≤ 0 and n0 = 0

, (2.11)

which is also shown in Fig. 2.2.

This uniformity also causes fixing the particle density since

⟨ρ̂⟩ :=
1

Ns

Ns∑
i=1

⟨n̂i⟩ = n0 =
N

Ns

∈ Z+, (2.12)

which also indicates that the particle fluctuation vanishes, as shown below〈
n̂2
i

〉
− ⟨n̂i⟩2 = 0 . (2.13)

Using the result of particle density in Eq. (2.12), it can be said that the system

in such a limit is incompressible since the density does not depend on µ, which

leads to

κ :=
∂ ⟨ρ̂⟩
∂µ

= 0, (2.14)
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ε[n0(µ,U)]/U

Figure 2.2: Uniform number n0(µ, U) of bosons (blue line), and the local ground-
state energy in the on-site interaction strength U (orange dashed line) as a func-
tion of the chemical potential µ and U for the perfect Mott insulator phase.

where κ is the compressibility of the system.

The expectation values of the bosonic field operators also vanish, as follows:

⟨âi⟩ = 0, (2.15)

which is an important measure to distinguish the MI phase from the following

phase.
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2.1.2 Superfluid phase

In the other limit, where the on-site interactions completely disappear, and the

bosons can move freely throughout the lattice, the Hamiltonian becomes

ĤSF = −J
∑
⟨i,j⟩

(
â†i âj + h.c.

)
− µ

Ns∑
i=1

n̂i, (2.16)

which can be diagonalized in the momentum space by defining the equivalent

bosonic field operators in this space as

âk :=
1√
Ns

∑
i

eik·ri âi (2.17)

â†k :=
1√
Ns

∑
i

e−ik·ri â†i , (2.18)

under the assumption of the periodic boundary conditions and, thus

n̂k :=
1

Ns

Ns∑
i,j

eik·(rj−rj)â†i âj, (2.19)

which also suggests ∑
k

n̂k =
Ns∑
i

n̂i . (2.20)

These definitions also come with the following two orthonormality relations

1

Ns

Ns∑
i=1

ei(k−k′)·ri = δ(k− k′) (2.21)

1

Ns

∑
k

eik·(rj−ri) = δ(rj − ri) . (2.22)

Using these definitions for a d-dimensional hypercubic lattice, the Hamiltonian
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in Eq. (2.16) is obtained as

ĤSF = −J 1

Ns

∑
⟨i,j⟩

∑
k,k′

(
ei(k·ri−k′·rj)â†kâk′ + h.c.

)
(2.23)

−µ 1

Ns

Ns∑
i=1

∑
k,k′

ei(k−k′)·ri â†kâk′

= −J 1

Ns

∑
⟨i,j⟩

∑
k,k′

(
ei(k−k′)·rie−ik′·dij â†kâk′ + h.c.

)
(2.24)

−µ
∑
k

n̂k,

where dij := rj − ri is the nearest-neighbor vector, which has the same norm

∥dij∥ = a between all the nearest neighbors. These vectors can be simply

rewritten as the primitive lattice vectors, i.e. dij → dℓ, and the transforma-

tion
∑

⟨i,j⟩ →
∑Ns

i=1

∑d
ℓ=1 can be applied to the Hamiltonian in Eq. (2.24), which

turns out to be

ĤSF = −J 1

Ns

Ns∑
i=1

d∑
ℓ=1

∑
k,k′

(
ei(k−k′)·rie−ik′·dℓ â†kâk′ + h.c.

)
(2.25)

−µ
∑
k

n̂k

=
∑
k

[
−2J

d∑
ℓ=1

cos(k · dℓ)− µ
]
n̂k . (2.26)

Defining the single-particle energy εk as

εk := −2J
d∑

ℓ=1

cos(k · dℓ) (2.27)

= −2J
d∑

ℓ=1

cos(kℓa), (2.28)

the Hamiltonian in Eq. (2.26) becomes

ĤSF =
∑
k

(εk − µ)n̂k, (2.29)

which can be minimized by setting the wave vector k to zero, i.e. the Bloch state

of the lowest band. Such a phase is called the superfluid phase (SF). Thus, its
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ground state |ΨSF⟩ is defined as

|ΨSF⟩ =
1√
N !

(
â†k=0

)N
|0⟩ (2.30)

=
1√
N !

(
1√
Ns

Ns∑
i=1

â†i

)N

|0⟩ , (2.31)

which indicates the bosons’ delocalization in real space and their localization in

the momentum space. In this phase, the ground-state energy equals the total

energy with particle-hole excitations, i.e. E(N ± 1) = E(N), so there is no

energy gap between them.

Unlike the MI phase, the SF phase has no fixed particle density, i.e. ⟨ρ̂⟩ ∈ R+,

and the particle fluctuation does not vanish anymore. Moreover, the system

in such a phase is compressible, i.e. κ ̸= 0, and ⟨âi⟩ or simply the SF order

parameter is no longer zero.

2.1.3 Symmetries

A system’s properties that remain invariant under transformations such as trans-

lations, rotations, or reflections are called the symmetries of the system. They

are essential to analyze because they provide some significant constraints on the

system’s behavior.

For instance, the symmetries in the Bose-Hubbard model allow one to simplify

the model by reducing its degrees of freedom. Besides, as Noether suggests in

her first theorem [60], each continuous symmetry corresponds to a conserved

quantity. Thus, the Bose-Hubbard model also has some conserved quantities due

to the following symmetries.
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2.1.3.1 Particle number conservation

The time derivative of an operator Â can be written as

∂
〈
Â
〉

∂t
=
i

ℏ

〈[
Ĥ, Â

]〉
. (2.32)

Using Eq. (2.32) for the total bosonic number operator N̂ :=
∑Ns

i=1 n̂i, its time

derivative turns out to be zero because the Bose-Hubbard Hamiltonian commutes

with it, which corresponds to a global-U(1) symmetry, i.e. the total number

of boson is conserved. This symmetry exists if only if no boson is created or

annihilated due to some external sources.

2.1.3.2 Discrete translational symmetry

If the system is under a discrete translation transformation i → i + ℓ where i is

the lattice site index and ℓ is the shift amount, i.e. a spatial shift of the entire

lattice by ℓ in any direction, the Hamiltonian and all observables turn out to be

invariant. This symmetry is typically broken if the system is under a magnetic

field in a staggered configuration [11, 61–64]. It is also noted that this symmetry

may be broken in the numerical solutions due to finite system size.

2.1.3.3 U(1) gauge symmetry

The Hamiltonian is invariant under the following local-U(1) gauge transformation

âi → eiθâi

â†i → e−iθâ†i

⇒ n̂i → n̂i ⇒ Ĥ → Ĥ (2.33)

unless an external field is applied to the lattice.

Specifically, this gauge symmetry is broken for the SF phase due to the presence

of the complex-valued SF order parameter ⟨âi⟩ ∝ eiϕ [3, 8, 65].
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2.1.3.4 Time-reversal symmetry

Each bosonic field operator can be rewritten as

âi =

√
mω

2ℏ

(
q̂i + i

1

mω
p̂i

)
(2.34)

â†i =

√
mω

2ℏ

(
q̂i − i

1

mω
p̂i

)
, (2.35)

where q̂i is the position operator and p̂i is the momentum operator for the lattice

site i.

Since a time reversal transformation causes t→ −t, then its related transfor-

mation operator, i.e. the anti-unitary time-reversal operator Θ̂ commutes with

the position operator q̂i, and does not commute with the momentum operator p̂i,

i.e. Θ̂p̂iΘ̂
−1 = −p̂i [66]. Using these commutation relations, it turns out that

Θ̂âiΘ̂
−1 =

√
mω

2ℏ
Θ̂

(
q̂i + i

1

mω
p̂i

)
Θ̂−1 (2.36)

=

√
mω

2ℏ

(
Θ̂q̂iΘ̂

−1 − i 1

mω
Θ̂p̂iΘ̂

−1

)
(2.37)

=

√
mω

2ℏ

(
q̂i + i

1

mω
p̂i

)
(2.38)

= âi . (2.39)

A similar result for â†i comes out to Θ̂â†i Θ̂
−1 = â†i , so Θ̂ĤΘ̂−1 = Ĥ, i.e. the

Hamiltonian is invariant under time reversal as long as the system is subjected

to no external field.

2.1.4 Mean-field theory

Since these two phases compete in J-U -µ phase space, a phase transition must

happen at some point. If the total number of bosons is kept fixed, the phase

fluctuation determines a transition of the Berezinskii-Kosterlitz-Thouless (BKT)

type [67, 68]. Once the particle-hole excitations make the total number of bosons

vary, the transition is controlled by the particle fluctuation [8].
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To determine where these transitions take place in the phase space, several

analytical or numerical methods can be utilized. For such purposes, the simplest

method is called the mean-field (MF) theory.

In the MF theory, the hopping terms are decoupled by assuming that the

correlations between bosons are merely considered with an average value, i.e. a

mean field, so that the bosonic field operators are written as

âi := ψ + δâi (2.40)

â†i := ψ∗ + δâ†i , (2.41)

where ψ is the complex expectation value ⟨âi⟩ of the annihilation operator — the

SF order parameter — that is now independent of its lattice site, and δâ
(†)
i :=

â
(†)
i − ψ(∗) is the small fluctuation term.

Using these definitions for the field operators, the hopping operator can be

decoupled, as follows:

â†i âj = ψ∗âj + ψâ†i − |ψ|2 + δâ†iδâj (2.42)

≈ ψ∗âj + ψâ†i − |ψ|2, (2.43)

which leads to

ĤMF = −J
∑
⟨i,j⟩

(
ψ∗âj + ψâ†i − |ψ|2

)
+
U

2

Ns∑
i=1

n̂i(n̂i − 1)− µ
Ns∑
i=1

n̂i (2.44)

=
Ns∑
i=1

[
−zJ

(
ψ∗âi + ψâ†i − |ψ|2

)
+
U

2
n̂i(n̂i − 1)− µn̂i

]
(2.45)

=
Ns∑
i=1

(
ĥ
(0)
i + v̂i + zJ |ψ|2

)
, (2.46)

where z is the coordination number of the lattice, ĥ
(0)
i := U

2
n̂i(n̂i − 1)− µn̂i, and

v̂i := −zJ
(
ψ∗âi + ψâ†i

)
.

Since the perfect MI ground state
∣∣∣n(0)

0

〉
is the eigenstate of the unperturbed

single-site Hamiltonian ĥ
(0)
i , then ĥ

(0)
i exhibits

ĥ
(0)
i

∣∣∣n(0)
0

〉
= ϵ(0)n0

∣∣∣n(0)
0

〉
, (2.47)
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where ϵ
(0)
n0 := U

2
n0(n0 − 1)− µn0 is its eigenvalue.

For the rest of the calculations in the MF theory, only the single-site Hamil-

tonian is considered.

2.1.4.1 Perturbation theory

One way to find the MF ground states and the corresponding phase boundaries is

to apply the perturbation theory by assuming that the unperturbed Hamiltonian

is ĥ
(0)
i , and v̂i is the perturbation.

The calculation of the first-order MF energy correction ∆ϵ
(1)
n0 is straightforward:

∆ϵ(1)n0
=

〈
n
(0)
0

∣∣∣v̂i∣∣∣n(0)
0

〉
(2.48)

= −zJ
(
ψ∗√n0δn0,n0−1 + ψ

√
n0 + 1δn0,n0+1

)
(2.49)

= 0 . (2.50)

Similarly, ∆ϵ
(p)
n0 vanishes for every µ, U and ψ if p is a positive odd integer.

For the first-order MF state correction, i.e.

∣∣∣n(1)
0

〉
=
∑
m ̸=n

〈
m

(0)
0

∣∣∣v̂i∣∣∣n(0)
0

〉
ϵ
(0)
n0 − ϵ(0)m0

∣∣∣m(0)
0

〉
, (2.51)

the matrix element
〈
m

(0)
0

∣∣∣v̂i∣∣∣n(0)
0

〉
must be determined, which results as〈

m
(0)
0

∣∣∣v̂i∣∣∣n(0)
0

〉
= −zJ

(
ψ∗√n0δm0,n0−1 + ψ

√
n0 + 1δm0,n0+1

)
. (2.52)

Eq. (2.52) suggests that there are only two possible m0 values that do not

equal to n0, which is m0 = n0 ± 1. Thus, the first order correction
∣∣∣n(1)

0

〉
in the

MF state |n0⟩ becomes∣∣∣n(1)
0

〉
= −zJ

[
ψ∗√n0

U(n0 − 1)− µ
∣∣∣(n0 − 1)(0)

〉
− ψ
√
n0 + 1

Un0 − µ
∣∣∣(n0 + 1)(0)

〉]
. (2.53)
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In a similar way, the second- and fourth-order energy corrections can be cal-

culated as

∆ϵ(2)n0
= (zJ)2|ψ|2

[
n0

U(n0 − 1)− µ −
n0 + 1

Un0 − µ

]
(2.54)

∆ϵ(4)n0
= (zJ)4|ψ|4

{
n0(n0 − 1)

[U(n0 − 1)− µ]2[U(2n0 − 3)− 2µ]
(2.55)

− (n0 + 1)(n0 + 2)

(Un0 − µ)2[U(2n0 + 1)− 2µ]
(2.56)

−
[

n0

U(n0 − 1)− µ −
n0 + 1

Un0 − µ

]
(2.57)

×
[

n0

[U(n0 − 1)− µ]2
+

n0 + 1

(Un0 − µ)2

]}
. (2.58)

Therefore, the MF state energy can be rewritten as

ϵn0 = a0 + a2|ψ|2 + a4|ψ|4 +O
(
|ψ|6

)
, (2.59)

as in Landau theory [69], where a0 := ϵ
(0)
n0 , ap := ∆ϵ

(p)
n0 /|ψ|p, and p is a positive

even integer. For completeness, a2 ← a2 + zJ .

To minimize the MF energy in the fourth order of ψ, its partial derivative with

respect to the complex conjugate ψ∗ of the SF order parameter must be zero, as

shown below

∂ϵ
(4)
n0

∂ψ∗ = a2ψ + 2a4|ψ|2ψ (2.60)

= ψ
(
a2 + 2a4|ψ|2

)
= 0, (2.61)

which only gives two arguments of the energy minimum:

ψ = 0 & |ψ| =
√
−a2
2a4

. (2.62)

To ensure that they are minima, the following derivative must be positive:

∂2ϵ
(4)
n0

∂ψ∂ψ∗ = a2 + 4a4|ψ|2 > 0 . (2.63)
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Since Landau theory suggests that the highest power of the SF order parameter

must be positive so that the minimization of the energy functional does not require

an infinite order parameter, there are only two possible solutions for |ψ|:

|ψ| =

0 if a2 > 0√
−a2
2a4

if a2 < 0
, (2.64)

which obviously indicates that the MI phase exists if a2 > 0, and the SF phase

exists if a2 < 0.

Since there must be a second-order phase transition occurring at a2 = 0, then

a2 = zJ + (zJ)2
[

n0

U(n0 − 1)− µ −
n0 + 1

Un0 − µ

]
= 0 . (2.65)

By defining J̃ := J/U and µ̃ := µ/U , Eq. (2.65) thus becomes

zJ̃ +
(
zJ̃
)2 µ̃+ 1

[(n0 − 1)− µ̃](n0 − µ̃)
= 0, (2.66)

which has one valid solution for J̃ :

J̃ = − [(n0 − 1)− µ̃](n0 − µ̃)

z(µ̃+ 1)
. (2.67)

From J̃(µ̃, z;n0), µ̃
(
zJ̃ ;n0

)
can be obtained by solving the following quadratic

equation:

µ̃2 + µ̃
(
zJ̃ − 2n0 + 1

)
+ zJ̃ + n0(n0 − 1) = 0, (2.68)

which gives two solutions:

µ̃± =
1

2

[
2n0 − 1− zJ̃ ±

√(
zJ̃
)2
− 2zJ̃(2n0 + 1) + 1

]
, (2.69)

where µ+(−) designates the upper (lower) boundaries of the Mott lobes. As shown

in Fig. 2.3, the shape of the Mott lobes is concave.

As an example, for n0 = 1, the critical µ̃, i.e. µ̃c occurs when µ̃+ = µ̃− at(
zJ̃
)
c
, which results as(

zJ̃
)2
− 6zJ̃ + 1 = 0⇒

(
zJ̃
)
c

= 3− 2
√

2 ≈ 0.172 . (2.70)
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Figure 2.3: Mean-field phase diagram of the Bose-Hubbard model, obtained with
the perturbative approach.

The expectation value of the particle density operator can also be determined,

as follows:

⟨ρ̂⟩ = −∂ϵ
(4)
n0

∂µ
= n0 −

∂

∂µ

(
a2|ψ|2 + a4|ψ|4

)
, (2.71)

which results as ⟨ρ̂⟩ = n0 for the MI phase because |ψ| = 0. However, since

|ψ| =
√

−a2
2a4

for the SF phase, it now turns out to be

⟨ρ̂⟩ = n0 −
∂

∂µ

(
− a22

2a4
+

a22
4a4

)
(2.72)

= n0 +
∂

∂µ

(
a22
4a4

)
(2.73)

= n0 +
a2
2a4

∂a2
∂µ
− a22

4a24

∂a4
∂µ

. (2.74)

Here, it is noted that the SF-MI phase transition with a fixed ⟨ρ̂⟩ = n0 occurs
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when
∂a2
∂µ
− a2

2a4

∂a4
∂µ

= 0 . (2.75)

Thus, since this transition at the tips of the Mott lobes takes place when a2 = 0,

Eq. (2.75) then becomes ∂a2
∂µ

= 0.

Regarding compressibility, for the MI phase, κ = 0 since ⟨ρ̂⟩ = n0. Whereas,

for the SF phase, κ no longer vanishes but turns out to be

κ =
∂2

∂µ2

(
a22
4a4

)
. (2.76)

2.1.4.2 Self-consistency solution

Instead of using the perturbation theory, the ground state can be found by opti-

mizing the SF order parameter ψ via a self-consistency procedure.

To do that, the matrix elements of the single-particle Hamiltonian denoted in

Eq. (2.46) must be determined, which are

⟨n|ĤMF,i|m⟩ =

[
U

2
m(m− 1)− µm+ zJ |ψ|2

]
δn,m (2.77)

−zJψ∗√mδn,m−1 − zJψ
√
n δn−1,m,

which can be shown as

ĤMF,i :=


zJ |ψ|2 −zJψ∗ 0 0

−zJψ −µ+ zJ |ψ|2 −
√

2zJψ∗ 0

0 −
√

2zJψ U − 2µ+ zJ |ψ|2 −
√

3zJψ∗

0 0 −
√

3zJψ 3U − 3µ+ zJ |ψ|2

 (2.78)

if the maximum occupation number is set to be 3, i.e. nmax → 3. Similarly, the

bosonic field operators can also be represented by the following matrices:

âi :=


0
√

1 0 0

0 0
√

2 0

0 0 0
√

3

0 0 0 0

 & â†i :=


0 0 0 0√
1 0 0 0

0
√

2 0 0

0 0
√

3 0

 . (2.79)
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In the beginning, ψ is initialized randomly. Then, the expectation value

⟨Ψ0|âi|Ψ0⟩ of the annihilation operator is determined with the first normalized

eigenvector |Ψ0⟩ of the single-particle Hamiltonian matrix in Eq. (2.78) for the

current ψ. Ideally, this expectation value should equal ψ, so the true value of ψ

can be found by repeating this calculation process, as shown in Algorithm 1. As

an example, |ψ|2 and ⟨n̂i⟩ are plotted for the different values of zJ/U and µ/U

in Fig. 2.4.

Algorithm 1 Self-consistency procedure for the mean-field theory

Require: ε≪ 0, nmax ∈ Z+, ψ ∈ R
1: ψpre

opt ← 0
2: ψopt ← 1
3: while

∣∣ψopt − ψpre
opt

∣∣ > ε do
4: determine the normalized first eigenvector |Ψ0⟩ of the mean-field Hamil-

tonian matrix ĤMF,i for ψopt

5: ψpre
opt ← ψopt

6: ψopt ← ⟨Ψ0|âi|Ψ0⟩
7: end while

2.1.5 Strong-coupling perturbation theory

Another approach to obtain the SF-MI phase diagram is a strong-coupling expan-

sion with the perturbation theory [70, 71]. For that, the Hamiltonian is rewritten

as

Ĥ := Ĥ(0) + λV̂ , (2.80)

where

Ĥ(0) :=
U

2

Ns∑
i=1

n̂i(n̂i − 1)− µ
Ns∑
i=1

n̂i (2.81)

V̂ := −U
∑
⟨i,j⟩

(
â†i âj + h.c.

)
, (2.82)

and λ := J/U is the small parameter. With such a choice, the MI ground state

and its corresponding energy can be written as

|ΨMI⟩λ :=
∣∣∣n(0)

0

〉
+ λ

∣∣∣n(1)
0

〉
+ λ2

∣∣∣n(2)
0

〉
+ · · · (2.83)

En0(λ) := E(0)
n0

+ λ∆E(1)
n0

+ λ2 ∆E(2)
n0

+ · · · , (2.84)
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Figure 2.4: Mean-field phase diagrams of the Bose-Hubbard model in the zJ-µ
plane with the self-consistency for nmax = 8. The z-axis of the subplots denotes
the modulus squared |ψ|2 of the superfluid order parameter ψ and the expectation
value ⟨n̂i⟩ of the local number operator n̂i, respectively.
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where
∣∣∣n(0)

0

〉
indicates the perfect MI state |ΨMI⟩, so that

Ĥ(0)
∣∣∣n(0)

0

〉
= E(0)

n

∣∣∣n(0)
0

〉
, (2.85)

where E
(0)
n0 = Ns

[
U
2
n0(n0 − 1)− µn0

]
.

It is noted that the first-order energy correction vanishes, as follows:

∆E(1)
n0

=
〈
n
(0)
0

∣∣∣V̂∣∣∣n(0)
0

〉
= 0, (2.86)

which also indicates that the odd-order energy corrections vanish, i.e. ∆E
(p)
n0 = 0

where p is a positive odd integer.

Since the first-order state correction is defined as

∣∣∣n(1)
0

〉
=
∑
m̸=n0

〈
m(0)

∣∣∣V̂∣∣∣n(0)
0

〉
E

(0)
n0 − E(0)

m

∣∣m(0)
〉
, (2.87)

the only valid ket state for that correction is∣∣m(0)
〉

:= N
∑
⟨i,j⟩

(
â†i âj + h.c.

) ∣∣∣n(0)
0

〉
(2.88)

= −N
U
V̂
∣∣∣n(0)

0

〉
, (2.89)

where N is a real-valued normalization constant, so this state correction becomes

∣∣∣n(1)
0

〉
=
N 2

U2

〈
n
(0)
0

∣∣∣V̂2
∣∣∣n(0)

0

〉
E

(0)
n0 − E(0)

m

V̂
∣∣∣n(0)

0

〉
. (2.90)

Finding the result of the matrix element in the numerator in Eq. (2.90) is

straightforward, as shown below:〈
n
(0)
0

∣∣∣V̂2
∣∣∣n(0)

0

〉
= U2

∑
⟨i,j⟩

〈
n
(0)
0

∣∣∣(â†i âj + h.c.
)2∣∣∣n(0)

0

〉
(2.91)

= U2
∑
⟨i,j⟩

〈
n
(0)
0

∣∣∣n̂i + n̂j + 2n̂in̂j

∣∣∣n(0)
0

〉
(2.92)

= 2U2Nnnn0(n0 + 1), (2.93)
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where Nnn is the number of the nearest-neighbour couples in the whole lattice,

which is different from the coordination number z denoting the number of the

nearest neighbours for a single lattice site. This matrix element also leads to

finding the normalization constant N for
∣∣m(0)

〉
because

〈
m(0)

∣∣m(0)
〉

= 1 =
N 2

U2

〈
n
(0)
0

∣∣∣V̂2
∣∣∣n(0)

0

〉
(2.94)

= 2N 2Nnnn0(n0 + 1) . (2.95)

Since Nnn := zNs/2 for a hypercubic lattice with the periodic boundary con-

ditions, the constant turns out to be

N =
1√

zNsn0(n0 + 1)
, (2.96)

which also allows one to rewrite that matrix element as〈
n
(0)
0

∣∣∣V̂2
∣∣∣n(0)

0

〉
=
U2

N 2
. (2.97)

The energy for the ket state
∣∣m(0)

〉
is also required to determine the first-order

state correction, which results as

E(0)
m =

〈
m(0)

∣∣Ĥ(0)
∣∣m(0)

〉
(2.98)

=
N 2

2U

〈
n
(0)
0

∣∣∣V̂Ĥ(0)V̂
∣∣∣n(0)

0

〉
(2.99)

=
N 2

U2

(
E(0)

n0

〈
n
(0)
0

∣∣∣V̂2
∣∣∣n(0)

0

〉
+
〈
n
(0)
0

∣∣∣V̂[Ĥ(0), V̂
]∣∣∣n(0)

0

〉)
(2.100)

=
N 2

U2

(
E(0)

n0
+ U

) 〈
n
(0)
0

∣∣∣V̂2
∣∣∣n(0)

0

〉
(2.101)

= E(0)
n0

+ U, (2.102)

which leads to ∣∣∣n(1)
0

〉
= −V̂

U

∣∣∣n(0)
0

〉
=
∑
⟨i,j⟩

(
â†i âj + â†j âi

) ∣∣∣n(0)
0

〉
. (2.103)
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Using this first-order state correction, the second-order energy correction be-

comes

∆E(2)
n0

=
〈
n
(0)
0

∣∣∣V̂∣∣∣n(1)
0

〉
(2.104)

= − 1

U

〈
n
(0)
0

∣∣∣V̂2
∣∣∣n(0)

0

〉
(2.105)

= −zUNsn0(n0 + 1), (2.106)

so the perturbative energy of the state up to the econd order is obtained as

E(2)
n0

= Ns

[
U

2
n0(n0 − 1)− µn0 −

zJ2

U
n0(n0 + 1)

]
. (2.107)

Determining the SF-MI phase boundaries also requires the energy of the defect

states ∣∣∣Ψ+,i
(0)
〉

:=
1√

n0 + 1
â†i
∣∣n0

(0)
〉

(2.108)∣∣∣Ψ−,i
(0)
〉

:=
1√
n0

âi
∣∣n0

(0)
〉
, (2.109)

which are simply the MI ground state with a particle and hole excitation in

one lattice site. As can be seen in Eqs. (2.108) and (2.109), they are Ns-fold

degenerate, so the degenerate perturbation theory is applied for these defect

states. To utilize their correct form, their general states are defined as

∣∣∣Ψ+
(0)
〉

:=
Ns∑
i=1

fi

∣∣∣Ψ+,i
(0)
〉

(2.110)

∣∣∣Ψ−
(0)
〉

:=
Ns∑
i=1

fi

∣∣∣Ψ−,i
(0)
〉
, (2.111)

where fi is the eigenvector of the single-particle matrix Si,j = −Ji,j =

−Jδ[ri − (rj ± eµ)] where µ = x, y or z.

The calculation of the perturbative energy of the defect states is long but
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explicit [70, 72], which gives the following perturbative energies:

E
(2)
+ = E(2)

n0
+ Un0 − µ+ λmin(n0 + 1) (2.112)

+
1

2U

∑
i,j

J2
i,jf

2
j n0(5n0 + 4)− 1

U
λ2minn0(n0 + 1)

E
(2)
− = E(2)

n0
− U(n0 − 1) + µ+ λminn0 (2.113)

+
1

2U

∑
i,j

J2
i,jf

2
j (n0 + 1)(5n0 + 1)− 1

U
λ2minn0(n0 + 1) .

Since all possible hoppings are between the nearest neighbours in a hypercubic

lattice, the lowest eigenvalue λmin of the single-particle matrix Si,j is equal to

−zJ and the sum
∑

i,j J
2
i,jf

2
j thus becomes zJ2, which makes Eqs. (2.112) and

(2.113) to turn out to be

E
(2)
+ = E(2)

n0
+ Un0 − µ− zJ(n0 + 1) (2.114)

+
zJ2

2U
n0(5n0 + 4)− z2J2

U
n0(n0 + 1)

E
(2)
− = E(2)

n0
− U(n0 − 1) + µ− zJn0 (2.115)

+
zJ2

2U
(n0 + 1)(5n0 + 1)− z2J2

U
n0(n0 + 1) .

To find the boundaries of the Mott lobes, E
(2)
+ −E(2)

n0 = 0 and E
(2)
n0 −E(2)

− = 0

are solved for µ
(2)
+ and µ

(2)
− , respectively:

µ̃
(2)
+ = n0 − zJ̃(n0 + 1) + zJ̃2

2
n0(5n0 + 4)− z2J̃2n0(n0 + 1) (2.116)

µ̃
(2)
− = n0 − 1 + zJ̃n0 − zJ̃2

2
(n0 + 1)(5n0 + 1) + z2J̃2n0(n0 + 1), (2.117)

which are plotted for the first three Mott lobes in Fig. 2.5. Here, it is noted that

the Mott lobes’ shape is no longer concave as in the mean-field result but convex.

For example, for n0 = 1 and an 1D hypercubic lattice, i.e. z = 2, µ̃c occurs

when µ̃+ = µ̃− at J̃c, which results as

5J̃ − 6J̃ + 1 = 0⇒ J̃c = 0.2 . (2.118)
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Figure 2.5: Phase diagram of a 1D Bose-Hubbard model with the strong-coupling
perturbation theory.

2.2 Two-leg Bose-Hubbard ladder under an ar-

tificial magnetic flux

In this section, the Bose-Hubbard model is considered to be confined on an optical

lattice in the form of ladder geometry with rungs under artificial magnetic flux,

as shown in Fig. 2.6.

Its Hamiltonian can be defined as

Ĥ = Ĥt + Ĥint, (2.119)
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Figure 2.6: Schematic of the two-leg Bose-Hubbard ladder under magnetic field.

where

Ĥt := −J
L∑

m=1

∑
ℓ∈{u,d}

(
eiσℓϕ/2â†ℓ,m+1âℓ,m + h.c.

)
(2.120)

−K
L∑

m=1

(
â†u,mâd,m + h.c.

)
,

and

Ĥint :=
U

2

L∑
m=1

∑
ℓ∈{u,d}

n̂ℓ,m(n̂ℓ,m − 1) . (2.121)

Here, âℓ,m and â†ℓ,m are the bosonic field operators at the lattice site (ℓ,m), ℓ =

u, d indicates the upper and lower site of a rung, J and K is the intra- and

inter-leg hopping amplitudes, U is the on-site interaction strength, σℓ = +1

(−1) for ℓ = u (d), ϕ is the phase from the artificial magnetic field, and L

is the number of rungs. Using the Peierls substitution [73], the phase can be

related to a synthetic magnetic flux ϕ =
∫
AB · da =

∮
C A · dl passing through

each plaquette, where B and A are the corresponding artificial magnetic field

and vector potential, C is a closed path around a plaquette, A is the area of a

plaquette, and B = ∇ × A. Since the Hamiltonian in Eq. (2.119) is invariant

under the tranformation (u, d, ϕ) → (d, u,−ϕ), the domain of the flux is limited

as 0 < ϕ ≤ 2π.

For the weakly interacting regime, the SF phases differentiate from each other

[15, 58], which can be probed with the single-particle solution, as follows: Using
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the translation invariance along legs, the bosonic field operators in the momentum

space can be defined as

âk :=
1√
L

∑
k

eikmaâu,m (2.122)

b̂k :=
1√
L

∑
k

eikmaâd,m, (2.123)

so that the inter-leg coupling terms transform into

L∑
m=1

â†u,mâd,m =
1

L

∑
k,k′

L∑
m=1

ei(k−k′)maâ†kb̂k′ (2.124)

=
∑
k

â†kb̂k, (2.125)

and similarly for the intra-leg coupling terms:

L∑
m=1

eiϕ/2â†u,m+1âu,m =
1

L

∑
k,k′

L∑
m=1

ei(k−k′)maei(ka+ϕ/2)â†kâk′ (2.126)

=
∑
k

ei(ka+ϕ/2)â†kâk (2.127)

L∑
m=1

e−iϕ/2â†d,m+1âd,m =
∑
k

ei(ka−ϕ/2)b̂†kb̂k, (2.128)

These definitions let one redefine the Hamiltonian in Eq. (2.119) for U = 0 as

Ĥt =
∑
k

Ĥk, (2.129)

where

Ĥk := −2J

[
cos

(
ka+

ϕ

2

)
â†kâk + cos

(
ka− ϕ

2

)
b̂†kb̂k

]
−K

(
â†kb̂k + b̂†kâk

)
, (2.130)

or simply

Ĥk = ĉ†khkĉk (2.131)

with

hk := −2J

[
cos(ka) cos

(
ϕ

2

)
σ0 − sin(ka) sin

(
ϕ

2

)
σz

]
−Kσx, (2.132)

where σi are the Pauli matrices.
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It is noted that the single-particle Hamiltonian Ĥk in Eq. (2.131) can be diag-

onalized via the Bogoliubov transformation, as follows:

γ̂k :=

(
α̂k

β̂k

)
:= [cos(θk)σ0 + i sin(θk)σy]ĉk, (2.133)

which transforms the local Hamiltonian into

Ĥk = γ̂†
k

(
ϵ+(k) 0

0 ϵ−(k)

)
γ̂k, (2.134)

where

θk :=
1

2
arctan

( −K
2J sin(ka) sin(ϕ/2)

)
, (2.135)

and

ϵ±(k) = −2J cos(ka) cos

(
ϕ

2

)
±
√

4J2 sin2(ka) sin2

(
ϕ

2

)
+K2 . (2.136)

As seen in Fig. 2.7, the minima of these two energy bands ϵ± in Eq. (2.136)

change depending on the choice of the hopping ratio K/J and the magnetic flux

ϕ. The minimization of these bands ϵ± can be done by calculating the first- and

second-order derivative with respect to k:

∂ϵ±
∂k

= 2Ja sin(ka)

cos

(
ϕ

2

)
± 2J cos(ka) sin2

(
ϕ
2

)√
4J2 sin2(ka) sin2

(
ϕ
2

)
+K2

 (2.137)

∂2ϵ±
∂k2

= 2Ja2 cos(ka) cos

(
ϕ

2

)
± 4J2a2 cos(2ka) sin2

(
ϕ
2

)√
4J2 sin2(ka) sin2

(
ϕ
2

)
+K2

(2.138)

∓ 4J4a2 sin2(2ka) sin2
(
ϕ
2

)[
4J2 sin2(ka) sin2

(
ϕ
2

)
+K2

]3/2 ,
which suggests that the first obvious minimum of the lower band ϵ−(k) occurs at

k = 0 if K > 2J tan(ϕ/2) sin(ϕ/2) since its second-order derivative in Eq. (2.138)

must be positive. If K < 2J tan(ϕ/2) sin(ϕ/2), then the following equality must

be satisfied to minimize the lower band ϵ−(k):

cos

(
ϕ

2

)
=

2J cos(ka) sin2
(
ϕ
2

)√
4J2 sin2(ka) sin2

(
ϕ
2

)
+K2

. (2.139)
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Figure 2.7: Normalized energy band minima (solid blue and green lines for the
upper and lower bands, respectively) and maxima (dashed blue and green lines
for the upper and lower bands, respectively) of the single-particle solution to a
two-leg Bose-Hubbard ladder as a function of the magnetic flux ϕ for different
hopping ratios K/J = 0.5 (left subplot), K/J = 1 (middle subplot) and K/J = 2
(right subplot). These plots can be considered as the Hofstadter butterflies of the
two-leg flux ladder system for varying hopping ratio K/J .

This equality can be rewritten as

sin2(ka) = sin2

(
ϕ

2

)
− K2

4J2 tan2
(
ϕ
2

) , (2.140)

which defines the other two arguments of the minimum as k = ±k0 where

k0 :=
1

a
arcsin

(√
sin2

(
ϕ

2

)
− K2

4J2 tan2
(
ϕ
2

)), (2.141)

which is shown in Fig. 2.8. Additionally, the critical magnetic flux to di-

vert the arguments of the minimum can be obtained by rewriting K =
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2J tan(ϕc/2) sin(ϕc/2) as

ϕc = 2 arccos

−K
4J
±
√(

K

4J

)2

+ 1

, (2.142)

so that a single minimum occurs at k = 0 for |ϕ| < ϕc, and a degenerate minimum

occurs at k = ±k0 for |ϕ| > ϕc, which is plotted in Fig. 2.9, as also indicated in

[15].

0 π/4 π/2 3π/4 π

magnetic flux φ

0

π/8

π/4

3π/8

π/2

k
0
a

K/J = 0

K/J = 0.5

K/J = 1
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Figure 2.8: Wave number k0, corresponding to the argument of degenerate energy
band minimum, times the lattice constant a as a function of the magnetic flux
ϕ at three hopping ratios K/J = 0 (blue dashed line), K/J = 0.5 (green line),
K/J = 1 (orange line) and K/J = 2 (purple line) for the single-particle solution
to a two-leg Bose-Hubbard ladder.

As [58] suggests, the following mean-field ansatz for the SF ground states is

considered:

|Gk0⟩ :=
1√
N !

[
cos(ω)β̂†

k0
+ sin(ω)β̂†

−k0

]N
|0⟩ , (2.143)
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(middle subplot) and ϕ = 1 (right subplot) for different hopping ratios K/J = 0.5
(blue line), K/J = 1 (orange line) and K/J = 2 (grey line). The solid and dashed
lines indicate the lower and upper bands, respectively.

where 0 < ω < ϕ/2 for k0 > 0 and ω = 0 for k0 = 0.

From this ansatz in Eq. (2.143), several calculations can be carried out, such as

the net current jn, which must be zero at equilibrium according to the continuity

equation regardless of the value of the variable ω; thus it turns out to be

jn :=
1

N

∑
k

⟨Gk0 |ĉ†k
∂hk

∂k
ĉk|Gk0⟩ , (2.144)

where the operator ĉ†k
∂hk

∂k
ĉk results as

ĉ†k
∂hk

∂k
ĉk = 2Ja

[
sin

(
ka+

ϕ

2

)
n̂
(a)
k + sin

(
ka− ϕ

2

)
n̂
(b)
k

]
, (2.145)
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and n̂
(q)
k := q̂†kq̂k and q ∈ {a, b}.

To determine ⟨Gk0|n̂(q)
k |Gk0⟩, firstly, q̂k |Gk0⟩ must be obtained. After using

some straightforward but lengthy commutation relations, it becomes

q̂k |Gk0⟩ =
N√
N !

[q̂k, ν̂k0 ]ν̂
N−1
k0
|0⟩ , (2.146)

where ν̂k0 := cos(ω)β̂†
k0

+ sin(ω)β̂†
−k0

and[
âk, ν̂k0

]
= − sin(θk)[δk,k0 cos(ω) + δk,−k0 sin(ω)] (2.147)[

b̂k, ν̂k0

]
= cos(θk)[δk,k0 cos(ω) + δk,−k0 sin(ω)], (2.148)

so that

⟨Gk0|n̂(q)
k |Gk0⟩ = N |[q̂k, ν̂k0 ]|2 . (2.149)

Using Eqs. (2.147), (2.148) and (2.149), the net current is obtained as

jn = cos2(ω)
(
j
(a)
k0

+ j
(b)
k0

)
+ sin2(ω)

(
j
(a)
−k0

+ j
(b)
−k0

)
, (2.150)

where the currents on each leg are

j
(a)
k0

:= 2Ja sin

(
k0a+

ϕ

2

)
sin2(θk0) (2.151)

j
(b)
k0

:= 2Ja sin

(
k0a−

ϕ

2

)
cos2(θk0) . (2.152)

It is noted that Eq. (2.135) suggests the following relation:

j
(a)
k0

+ j
(b)
k0

=
∂ϵ−
∂k

∣∣∣∣
k0

= 0 . (2.153)

Similarly, j
(a)
−k0

+ j
(b)
−k0

= 0, so the net current vanishes, i.e.

jn = 0, (2.154)

which is independent of the values of ω and k0, as expected.

Rather than the net current jn, another measure can be the chiral current

jc. It designates the chirality in the ladder system with the current difference
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between the legs, which can be calculated, as follows:

jc :=
1

N

∑
k

⟨Gk0|ĉ†kσz
∂hk

∂k
ĉk|Gk0⟩ (2.155)

= cos2(ω)
(
j
(a)
k0
− j(b)k0

)
+ sin2(ω)

(
j
(a)
−k0
− j(b)−k0

)
(2.156)

= 4Ja sin

(
k0a+

ϕ

2

)
sin2(θk0) . (2.157)

Addition to these currents, the local particle density nℓ,m for each site is defined

using Eq. (2.149), as follows:

nℓ,m = ⟨Gk0|n̂ℓ,m|Gk0⟩ = N |[âℓ,m, ν̂k0 ]|2 . (2.158)

By using the relation sin2(θk0) = cos2(θ−k0) and the definition of mean density

n̄ := N/L, it turns out to be

nℓ,m = n̄ℓ + δnℓ,m, (2.159)

where

n̄ℓ/n̄ := cos2(ω)
[
δℓ,u sin2(θk0) + δℓ,d cos2(θk0)

]
(2.160)

+ sin2(ω)
[
δℓ,u cos2(θk0) + δℓ,d sin2(θk0)

]
,

and

δnℓ,m/n̄ :=
1

2
sin2(ω) sin(2θk0) cos(2k0ma) . (2.161)

Combining the on-site interaction Hamiltonian Ĥint with the single-body

Hamiltonian Ĥt, the variational energy per boson for the ansatz in Eq. (2.143)

becomes

E(ω, k) :=
1

N
⟨Gk|Ĥt + Ĥint|Gk⟩ (2.162)

= ϵ−(k) + ϵint(k, ω), (2.163)

where

ϵint(k, ω) :=
1

N
⟨Gk|Ĥint|Gk⟩ (2.164)

=
U

2N

L∑
m=1

∑
ℓ∈{u,d}

(
⟨Gk0|n̂2

ℓ,m|Gk0⟩ − nℓ,m

)
. (2.165)
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nℓ,m is already known, and ⟨Gk0|n̂2
ℓ,m|Gk0⟩ can be determined by using

Eq. (2.146), as follows:

⟨Gk0|n̂2
ℓ,m|Gk0⟩ =

N2

N !
|[âℓ,m, ν̂k]|2

〈
0

∣∣∣∣(ν̂†k)N−1

(n̂ℓ,m + 1) ν̂Nk

∣∣∣∣0〉 (2.166)

= nℓ,m +
N − 1

N
n2
ℓ,m (2.167)

≈ nℓ,m + n2
ℓ,m, (2.168)

which leads to

ϵint(k, ω) =
U

2N

L∑
m=1

∑
ℓ∈{u,d}

n2
ℓ,m (2.169)

=
Un̄2

2N

[
L
(
n̄2
u + n̄2

d

)
+ 2(n̄u + n̄d)

∑
m

δnℓ,m (2.170)

+2
∑
m

(δnℓ,m)2
]
.

The first sum of the variational interaction energy in Eq. (2.170) vanishes because∑
m

δnℓ,m =
1

2
sin(2ω) sin(2θk)

∑
m

cos(2kma) (2.171)

= δk,0
L

2
sin(2ω) sin(2θk) (2.172)

= 0 . (2.173)

The second sum also has a similar form as the previous one:∑
m

(δnℓ,m)2 =
1

4
sin2(2ω) sin2(2θk) y(k), (2.174)

where

y(k) :=
∑
m

cos2(2kma) . (2.175)

The function y(k) can be determined by first differentiating it

∂y

∂k
= −2a

∑
m

m sin(4kma), (2.176)
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and then integrating it∫ y(k′)

y(0)

dy = y(k′)− L = −2a
∑
m

∫ k′

0

sin(4kma) dk (2.177)

=
1

2

∑
m

[cos(4kma)− 1] (2.178)

=
1

2
L(δk,0 − 1), (2.179)

which gives out ∑
m

(δnℓ,m)2 =
1

8
L sin2(2ω) sin2(2θk) . (2.180)

Using the result of these sums in Eqs. (2.173) and (2.180), the interaction

energy ϵint results as

ϵint(k, ω) =
Un̄

2

{
1− 1

2
sin2(2θk) + sin2(2ω)

[
3

4
sin2(2θk)− 1

2

]}
. (2.181)

Since the derivative of the variational energy in Eq. (2.143) with respect to

the variable ω only depends on the interaction energy

∂E

∂ω
=

∂ϵint
∂ω

(2.182)

= Un̄ sin(4ω)

[
3

4
sin2(2θk)− 1

2

]
, (2.183)

it is then obvious that E(k, ω) is minimized at ω = 0 if sin2(2θk) ≥ 2/3; otherwise,

the energy minimum occurs at ω = π/4.

A remarkable array of SF phases can be realized via this ansatz in this system,

showcasing distinct vortex and local particle density profiles [27]. To simplify the

discussion, the focus lies on three basic SF phases that can be tuned by altering

the inter-leg hopping parameter K, while maintaining a fixed magnetic flux ϕ,

which affects the choice of the variational parameter ω and the wave number k

that minimizes the variational energy.
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Figure 2.10: Local particle density as a function of the ladder index m for each
leg (blue solid line for the up leg, green dashed line for the down leg) at a fixed
magnetic flux ϕ = π/2 and normalized on-site interaction strength Un̄/J = 0.2
for different hopping ratios K/J via the mean-field approach. The particle density
of the chiral, biased-ladder and vortex phases are drawn at the top (K/J = 1.40),
middle (K/J = 1.05) and bottom (K/J = 0.65) of the figure, respectively.

2.2.1 Chiral phase

If ω = 0 and k = 0 are the arguments that minimize the energy, the chiral current

jc becomes

jc = jc,max := 2Ja sin

(
ϕ

2

)
, (2.184)

and the local particle density for each site is invariant both along and across the

legs, as shown in the top subplot of Figs. 2.10 and 2.11, so that

nℓ,m =
n̄

2
, (2.185)
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Figure 2.11: Representations of the superfluid phases in the weakly interacting
regime on a two-leg ladder lattice. The direction and magnitude of the green
arrows with their thickness and length represent the local currents between lattice
sites. The black dots and the red background shadings indicate the local particle
density on each site. The chiral, biased-ladder and vortex phases are figured at
the top, middle and bottom of the figure, respectively.

where such a phase is called the chiral phase or saturated-chiral-current phase,

which is also known as the Meissner phase. Here, the legs are strongly coupled,

and the superfluid velocities across the legs are equal in magnitude but opposite

in direction, without any rung current. Moreover, the only spontaneous broken

symmetry is the U(1) condensate phase symmetry.

2.2.2 Biased-ladder phase

If ω = 0 and k = ±k0, the local particle density differentiates with a constant

value in each leg, as shown in the middle subplot of Figs. 2.10 and 2.11, which is

defined as

nℓ,m = n̄
[
δℓ,u sin2(θk) + δℓ,d cos2(θk)

]
, (2.186)
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which indicates that the particle density is larger in one leg, and the superfluid

velocity is larger in the other leg, which exhibits the biased-ladder (BL) phase.

There are still no rung currents. Obviously, the Z2 reflection and U(1) condensate

phase symmetries are spontaneously broken.

2.2.3 Vortex phase

If ω = π/4 and k = ±k0, a modulation appears in the local particle density, as

shown in the bottom subplot of Figs. 2.10 and 2.11, so

nℓ,m =
n̄

2
[1 + sin(2θk) cos(2kma)], (2.187)

where its period increases with the hopping ratio K/J . The rung currents no

longer vanish but are finite. This phase is called the vortex phase or modulated-

density phase. Here, in addition to the spontaneous broken U(1) condensate

phase symmetry, another U(1) symmetry is broken, where the variational energy

is invariant under applying a phase to β̂†
±k0

of the ansatz in Eq. (2.143).

As seen in Fig. 2.12, the order of the phase transitions differentiates in this

regime. The BL-chiral phase transition is second order, so the chiral current is

continuous during the transition. For the vortex-BL phase transition, the order

is first; therefore, a discontinuous jump in the chiral current occurs during the

transition, where the jump size increases with the normalized on-site interaction

strength Un̄/J .

Rather than defined as in this mean-field approach, the local current operators

along the legs and rungs can be defined more generally as

ĵ
∥
ℓ,m := iJ

(
eiσℓϕ/2â†ℓ,m+1âℓ,m − h.c.

)
(2.188)

j⊥m := iK
(
â†u,mâd,m − h.c.

)
, (2.189)

which is utilized to write the chiral current operator as

ĵc =
1

L

∣∣∣∣∣∑
m

(
ĵ∥u,m − ĵ∥d,m

)∣∣∣∣∣ . (2.190)

40



0.0 0.2 0.4 0.6 0.8 1.0

on-site interaction Un̄/J

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
in

te
r-

le
g

h
op

p
in

g
K
/J

vortex phase

biased-ladder phase

chiral phase

φ = π/2

0.0

0.2

0.4

0.6

0.8

1.0

ch
ir

al
cu

rr
en

t
j c
/j

c
,m

a
x

Figure 2.12: Mean-field phase diagram of a two-leg Bose-Hubbard ladder as a
normalized chiral current function of the normalized on-site interaction strength
Un̄/J and the hopping ratio K/J at a fixed magnetic flux ϕ = π/2 via the mean-
field approach.

These superfluid phases can also be distinguished with two order parameters.

The first is the leg population imbalance ∆N — the boson population difference

between the legs — defined as

∆N :=

∣∣∣∑L
m=1 (nu,m − nd,m)

∣∣∣
N

, (2.191)

which has a non-zero value for the BL phase, but vanishes for the chiral and

vortex phases. The second one is the absolute average value j|⊥| of the rung

current, defined as

j|⊥| :=
1

L

L∑
m=1

∣∣∣〈ĵ⊥m〉∣∣∣, (2.192)

which becomes zero for the chiral and BL phases, and non-zero for the vortex
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phase, where all these order parameters are summarized in Table 2.1.

superfluid phase ∆N j|⊥|
chiral 0 0

biased-ladder > 0 0
vortex 0 > 0

Table 2.1: Order parameters for the superfluid phases occurring in the weakly
interacting regime for a two-leg Bose-Hubbard ladder under magnetic flux.

2.2.4 Gutzwiller variational approach

In the strongly interacting regime, the phases are well-known, which are nothing

but SF and MI phases. As it is known, a perfect MI ground state can be defined

as in Eq. (2.5) in the local Fock basis |n0⟩ℓ,m. Therefore, a SF ground state

can be represented on the same basis with a particle-hole excitation around the

perfect MI state as a small variation, which leads to the following site-dependent

Gutzwiller variational ansatz for each lattice site:

|Gℓ,m⟩ := ∆ℓ,m |n0 − 1⟩ℓ,m + |n0⟩ℓ,m + ∆′
ℓ,m |n0 + 1⟩ℓ,m , (2.193)

where ∆ :=
{

∆ℓ,m,∆
′
ℓ,m

}
are a set of small complex variational parameters.

Thus, the unnormalized site-independent Gutzwiller variational ansatz can be

written as ∣∣∣Ψ̃G

〉
:=

L⊗
m=1

⊗
ℓ∈{u,d}

|Gℓ,m⟩ , (2.194)

With this definition, the variational energy up to the second order in ∆ results

as

Ẽ(2)(∆) = −J̃
L∑

m=1

∑
ℓ∈{u,d}

e−σℓϕ/2f(ℓ,m; ℓ,m+ 1) (2.195)

−K̃
L∑

m=1

f(u,m; d,m)

+
L∑

m=1

∑
ℓ∈{u,d}

g(ℓ,m; µ̃),
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where the tilde sign corresponds to scaling with respect to U ,

f(ℓ,m; ℓ′,m′) := n0∆ℓ,m∆∗
ℓ′,m′ + (n0 + 1)(∆′

ℓ,m)∗∆′
ℓ′,m′ (2.196)

+
√
n0(n0 + 1)

[
∆ℓ,m∆′

ℓ′,m′ + (∆′
ℓ,m)∗∆∗

ℓ′,m′

]
,

and

g(ℓ,m; µ̃) := (1− n0 + µ̃)|∆ℓ,m|2 +
1

2
n0(n0 − 1− 2µ̃) + (n0 − µ̃)

∣∣∆′
ℓ,m

∣∣2 . (2.197)

It is obvious to see that the system is in the MI phase if the variational energy

is minimized where all variational parameters ∆ become zero. This allows one

to determine the SF-MI phase boundary where the variational energy turns out

to be a local minimum in ∆. To do so, its Hessian matrix HẼ with respect to

the variational parameters should be positive definite so that its all eigenvalues

are positive. This matrix can be written in the following compact way:

HẼ = −J̃
(

n0S
√
n0(n0 + 1)S√

n0(n0 + 1)S (n0 + 1)S

)
(2.198)

+

(
(1− n0 + µ̃)IN×N 0N×N

0N×N (n0 − µ̃)IN×N

)
, (2.199)

where I and 0 are N ×N identity and zero matrices, respectively,

S :=



A B 02×2 · · · 02×2 B†

B† A B 02×2 · · · 02×2

02×2 B† A B
. . .

...
...

. . . . . . . . . . . . 02×2

02×2 · · · 02×2 B† A B

B 02×2 · · · 02×2 B† A


N×N

, (2.200)

which is nothing but a single-particle matrix, and the submatrices A and B are

defined as

A :=
K̃

J̃
σx (2.201)

B := cos

(
ϕ

2

)
σ0 + i sin

(
ϕ

2

)
σz, (2.202)
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as discussed in [25, 74]. Here, the highest eigenvalue λS of S in the limit L→∞
corresponds to the maximized value of ϵ+(k)/J in Eq. (2.136) with respect to k.

The eigenvalues λH,± of the Hessian matrix HẼ can be found in terms of this

highest eigenvalue if the eigenvectors of HẼ are defined as

u :=

(
av

bv

)
, (2.203)

where v denotes the eigenvector of the single-particle matrix S for the highest

eigenvalue λS . Then, λH,± is obtained as

λH,± =
1

2

[
1− (2n0 + 1)J̃λS (2.204)

±
√

4(µ̃− n0)(1− n0 + µ̃) + 4(µ̃+ 1)J̃λS +
[
1− (2n0 + 1)J̃λS

]2]
.

To determine the SF-MI phase boundary, the minimum eigenvalue λH,− must

be equal zero, which leads to find

J̃b =
(n0 − µ̃)(1− n0 + µ̃)

(µ̃+ 1)λS

∣∣∣∣
K̃b,J̃b

, (2.205)

which can be rewritten as

µ̃± =
1

2

[
2n0 − 1− J̃bλS ±

√(
J̃bλS

)2
− 2J̃bλS(2n0 + 1) + 1

]∣∣∣∣∣
K̃b,J̃b

, (2.206)

where n0 − 1 ≤ µ̃ ≤ n0.

As can be seen in Fig. 2.13 where Eq. (2.206) for various hopping ratios K/J is

plotted, a change in the magnetic flux ϕ affects the Mott lobes and thus their tips.

The regions occupied by the Mott lobes grow with the modulus of the magnetic

flux up to |ϕ| = π and shrink up to |ϕ| = 2π.

It is also noted that the Gutzwiller approach is equivalent to the mean-field the-

ory [75–77] in a two-leg flux ladder system [25, 74], which is not expected to have

an accurate result because the effect of particle fluctuations in low-dimensional

systems cannot be ignored. Nevertheless, this mean-field result gives a consider-

able impression to understanding such a two-leg ladder system under a magnetic

field.
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Figure 2.13: Mean-field phase diagrams of a two-leg Bose-Hubbard ladder at
different hopping ratios K/J = 0.5 (left subplot), K/J = 1 (middle subplot) and
K/J = 2 (right subplot) for the normalized magnetic fluxes ϕ/π = 0 (blue line),
ϕ/π = 0.5 (orange line) and ϕ/π = 1 (grey line), which is obtained with the
Gutzwiller variational approach.

2.2.5 Strong-coupling perturbation theory

As discussed in the case of the vanilla Bose-Hubbard model, much more accu-

rate boundaries can be obtained by using the strong-coupling expansion with

the perturbation theory rather than the mean-field approach. To do that, the

Hamiltonian is rewritten as

Ĥ = −J
∑
i,j

(
Si,j â

†
i âj + h.c.

)
+
U

2

∑
i

n̂i(n̂i − 1)− µ
∑
i

n̂i, (2.207)
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by using the resulting normalized single-particle matrix S = {Si,j} defined in

Eq. (2.200) in the previous section. After some lengthy but straightforward cal-

culations, as done in [25], the normalized perturbative energies up to the second

order result as

Ẽ(2)
n0

= Ns

[
1

2
n0(n0 − 1)− µ̃n0 −

(
2J̃2 + K̃2

)
n0(n0 + 1)

]
(2.208)

Ẽ
(2)
+ = Ẽ(2)

n0
+ n0 − µ̃− J̃λS(n0 + 1)−

(
J̃λS

)2
n0(n0 + 1) (2.209)

+
1

2

(
2J̃2 + K̃2

)
n0(5n0 + 4)

Ẽ
(2)
− = Ẽ(2)

n0
− (n0 − 1) + µ̃− J̃λSn0 −

(
J̃λS

)2
n0(n0 + 1) (2.210)

+
1

2

(
2J̃2 + K̃2

)
(n0 + 1)(5n0 + 1),

which are similar to the energies without magnetic field in Eqs. (2.107), (2.114)

and (2.115). Here, the effect of the magnetic field appears in the eigenvalue λS .

Solving Ẽ
(2)
+ − Ẽ(2)

n0 = 0 and Ẽ
(2)
n0 − Ẽ(2)

− = 0 gives the boundaries µ̃
(2)
± of the Mott

lobes, as follows:

µ̃
(2)
+ = n0 − J̃λS(n0 + 1)−

(
J̃λS

)2
n0(n0 + 1) (2.211)

+
1

2

(
2J̃2 + K̃2

)
n0(5n0 + 4)

µ̃
(2)
− = (n0 − 1) + J̃λSn0 + (J̃λS)2n0(n0 + 1) (2.212)

−1

2

(
2J̃2 + K̃2

)
(n0 + 1)(5n0 + 1) .

When the phase boundaries are plotted as in Fig. 2.14 for the first three Mott

lobes at various hopping ratios K/J , the first noticeable thing is that the second-

order perturbation theory fails beyond around ϕ ≈ 0.6 forK/J ≈ 2, and the phase

boundaries unexpectedly cross each other at a large intra-leg hopping amplitude

J̃ , as indicated in [25]. Moreover, a phase transition from the MI phase to the

SF phase and then back to the MI phase starts to occur along the J/U axis after

ϕ ≈ 0.6 at a fixed chemical potential, which is called the re-entrant behaviour.

This behaviour is normally unexpected in the mean-field and second-order strong-

coupling results without magnetic flux, as shown in Figs. 2.3, 2.5, 2.13 and 2.14.
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Figure 2.14: Phase diagrams of a two-leg Bose-Hubbard ladder for different hop-
ping ratios K/J = 0.5 (left subplot) and K/J = 1 (right subplot) for the normal-
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(grey line), obtained with the strong-coupling perturbation theory.
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Chapter 3

Neural-network quantum states

This chapter reviews neural-network quantum states (NQS) in the context of the

Bose-Hubbard model and their stochastic optimization. Two different neural net-

work architectures are considered for calculating the ground-state wave function

of the Bose-Hubbard models. The first architecture considered is a restricted

Boltzmann machine (RBM), which Carleo and Troyer [33] initially introduced

for describing quantum spin models. It has also been applied to analyze the

phase diagram of the one-dimensional Bose-Hubbard model [54]. The second

architecture is a feedforward neural network (FNN), which is well-known in ma-

chine learning and has recently been applied to finding the ground state of the

vanilla Bose-Hubbard model [55, 56]. Next, the measurement of expectation val-

ues, sampling a many-body configuration from the Fock space using a Markov

chain Monte Carlo method, and the optimization techniques employed for these

ansatzes, considering various approaches, are discussed.
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3.1 Neural-network architectures

The choice of neural-network architecture makes wave function ansatzes different;

however, any neural-network quantum state can be formulated, as follows:

|ΨW⟩ = Î |ΨW⟩ =
∑
{S}

|S⟩ ⟨S|ΨW⟩ =
∑
{S}

ΨW(S) |S⟩ , (3.1)

where W is the set of all network parameters of the chosen neural-network ar-

chitecture and S is the given many-body configuration.

3.1.1 Restricted Boltzmann machine

σ1 σ2 σm σℓ σNi· · ·· · · · · ·

h1 h2 h3 h4 h5 h6 h7 hNh· · ·

input layer

hidden layer

n1 nNs

Figure 3.1: Restricted Boltzmann machine applied to the Bose-Hubbard model.
The input layer S corresponds to the physical space with the occupation number
nk, using a one-hot encoding with a maximum local occupation number nmax.
The number of input neurons is Ni = Ns × (nmax + 1). The hidden layer consists
of Nh = α×Ni neurons, where α ∈ Z+, with each neuron represented by a binary
value {−1, 1}.

The RBM ansatz consists of input and hidden layers, similar to neural networks

studied in machine learning, as illustrated in Fig. 3.1. The input layer represents

the physical space, while the hidden layer represents an abstract space that deter-

mines the architecture of the variational parameters in the wave function. One-

hot encoding is used for the bosonic occupation numbers in the physical space,

denoted as S = {σj | σj ∈ { 0, 1 } }Ni

j=1, for a system of Ni sites in an arbitrary

dimension. Each site in real space is represented by nk = { 0, 0, . . . , 1, . . . , 0 },
where nk has nmax + 1 binary elements. Only the mth element is 1, while all
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others are 0, indicating that there are m − 1 bosons on the kth site. An upper

bound is set by defining the maximum occupation number per site as nmax.

The hidden layer consists of Nh neurons that take the values of −1 or 1. In

the end, the variational wave function is written as a summation over the hidden

layer neurons as follows:

ΨW(S) = ⟨S|ΨW⟩ =
∑
{hi}

e
∑

i aihi+
∑

j bjσj+
∑

ij Wijhiσj , (3.2)

which is the probability amplitude of the given state S, and the dependence

on the set of all variational parameters is shown with W = { ai, bj,Wij } for

i = 1, . . . , Nh and j = 1, . . . , Ni, which are composed of biases and weights.

Bias parameters for input and hidden layers are conventionally called ai and bj,

respectively, and the weights of the links between the layers are called Wij. In

the RBM ansatz, any neuron in the visible layer is connected to all neurons in

the hidden layer, but there is no connection between two neurons in the same

layer; hence the name is restricted.

By performing the summation over {hi } in Eq. (3.2) and assuming the restric-

tion on connections, the hidden neurons can be traced out. For the variational

ansatz, this results in the following compact expression

ΨW(S) = ⟨S|ΨW⟩ = e
∑

j bjσj

∏
i

θi(S;W), (3.3)

whose derivatives with respect to each variational network parameter can be

calculated exactly without using automatic differentiation as follows:

1

ΨW(S)

∂

∂ai
[ΨW(S)] = tanh [θi(S;W)] (3.4)

1

ΨW(S)

∂

∂bj
[ΨW(S)] = σj (3.5)

1

ΨW(S)

∂

∂Wij

[ΨW(S)] = tanh [θi(S;W)]σj, (3.6)

where

θi(S;W) = 2 cosh

(
ai +

∑
j

Wijσj

)
. (3.7)
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Given Ns lattice sites, Nh hidden neurons, and a given maximum occupation

number nmax, the number of input neurons is Ni = (nmax + 1)×Ns. The density

of hidden layer neurons is denoted by α = Nh/Ni ∈ Z+, which can be adjusted

to improve the accuracy of the ansatz. It is important to note that the network

parameters can take real or complex values in the implementation, especially for

systems with broken time-reversal symmetry.

3.1.2 Feedforward neural network

n1 n2 n3 n4 nNs· · ·

h1 h2 h3 h4 h5 h6 h7 hNh· · ·

Re{ln (Ψ)} Im{ln (Ψ)}

input layer

hidden layer

output layer

Figure 3.2: Feedforward neural network applied to the Bose-Hubbard model. The
input layer consists of the site occupation numbers S = {nk | nk ∈ Z+

0 }Ns
k=1 with-

out any cutoff on the maximum occupation number. The hidden layer consists
of Nh = α × Ns neurons, where α ∈ Z+. The output layer comprises two neu-
rons representing Re{ln (Ψ)} = ln |Ψ| and Im{ln (Ψ)} = Φ, respectively, where
Ψ = |Ψ|eiΦ is the wave function.

The FNN ansatz, first introduced in [55] for the Bose-Hubbard model, consists

of three layers, as depicted in Fig. 3.2. The input layer corresponds to the physical

sites as in RBM, but each neuron takes integer values representing the number

of bosons in that site, without imposing any cutoff on the maximum occupation.

Specifically, the set is defined as S = {nk | nk ∈ Z+
0 }Ns

k=1. The hidden layer,

which comprises Nh real-valued neurons, is obtained using the expression

hj(S;V) = bj +
∑
k

Vjknk, (3.8)

where V = { bj, Vjk } is the set of variational network parameters connecting the
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input and hidden layers, bj are the biases for the hidden layer, and Vjk are the

weights of links between the layers.

The output layer consists of only two neurons, obtained from the hidden layer

using the hyperbolic tangent activation function, given by

ui(S;W) = ai +
∑
j

Wij tanh [hj(S;V)], (3.9)

where i = 1, 2. Here W = { ai,Wij, bj, Vjk } ∈ Rp is the combined set of all

variational network parameters between the input and output layers.

The final variational wave function is expressed in terms of the neurons in the

output layer as

ΨW(S) = ⟨S|ΨW⟩ = eu1(S;W)+iu2(S;W), (3.10)

which is complex valued. All the parameters in the network are real valued,

which provides a significant computational advantage compared to the RBM.

The hidden layer neuron density is defined in a similar manner to the previous

section, as α = Nh/Ns.

3.2 Measurement of expectation values

Calculating the expectation value of an arbitrary operator is straightforward.

Considering an operator Ô, its expectation value in a many-body state with NQS

ansatz results as〈
Ô
〉

=
⟨ΨW |Ô|ΨW⟩
⟨ΨW |ΨW⟩

(3.11)

=

∑
{S},{S′} ⟨ΨW |S⟩ ⟨S|Ô|S ′⟩ ⟨S ′|ΨW⟩∑

{S′} |ΨW(S ′)|2
(3.12)

=

∑
{S} |ΨW(S)|2∑{S′} ⟨S|Ô|S ′⟩ ΨW (S′)

ΨW (S)∑
{S′} |ΨW(S ′)|2

, (3.13)

where {S} and {S ′} indicate a complete basis in the Fock space.
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Eq. (3.13) can be simplified by dividing into the following two products:

Oloc(S;W) =
∑
{S′}

⟨S|Ô|S ′⟩ ΨW(S ′)

ΨW(S)
=
⟨S|Ô|ΨW⟩
⟨S|ΨW⟩

, (3.14)

which is the local estimator of an operator Ô, and

pW(S) =
|ΨW(S)|2∑

{S′} |ΨW(S ′)|2
, (3.15)

which is the normalized probability distribution for the state S. With these

choices, the expectation value in Eq. (3.13) can be reinterpreted as〈
Ô
〉

= ⟨Oloc⟩ =
∑
{S}

pW(S)Oloc(S;W) . (3.16)

Since exponentially expanding Hilbert spaces cause the difficulty of calculating

expectation values of operators, Markov chain Monte-Carlo (MCMC) sampling of

a set
{
S(i)

}M

i=1
of states from the probability distribution pW(S) is an appropriate

way to estimate expectation values of operators, as follows:

〈
Ô
〉
≈
〈
Ô
〉
MC

=
1

M

M∑
i=1

Oloc

(
S(i);W

)
, (3.17)

where M is the number of samples in the Markov chain. This estimate
〈
Ô
〉
MC

unbiasedly approaches the exact result of
〈
Ô
〉

in Eq. (3.16) when M goes to

infinity. However, it is not possible to choose infinity, so the choice of the number

of samples must be sufficiently large but finite. Due to this estimation,

var

(
M∑
i=1

Oloc

(
S(i);W

))
= M

〈
O2

loc

〉
, (3.18)

and the resulting variance is

var
(
Ô
)

=
1

M2
var

(
M∑
i=1

Oloc

(
S(i);W

))
=

1

M2
M
〈
O2

loc

〉
=
⟨O2

loc⟩
M

. (3.19)

The standard error ∆
〈
Ô
〉

=

√
var
(
Ô
)

=
√
⟨O2

loc⟩ /M ∼ 1/
√
M in this estimate

of expectation values declines as M increases.
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3.3 Sampling

Among MCMC methods, the Metropolis-Hastings algorithm [78] is one of the

appropriate and recognized MCMC methods for sampling configurations from the

probability distribution for NQS. The algorithm aims to generate a randomized

set of states, i.e. random samples based on a target probability distribution by

proposing a Markov chain (process) with transition probabilities.

It can be derived by using the principle of detailed balance so that each con-

figuration transition, for example, S → S ′, is reversible for any S and S ′, which

proposes that the probability of being in the configuration S and changing from

S to S ′ must be equal to the probability of being in the configuration S ′ and

changing from S ′ to S, and it can be denoted as follows:

pW(S) TW(S → S ′) = pW(S ′) TW(S ′ → S), (3.20)

where TW(S → S ′) is the transition probability from S to S ′.

Eq. (3.20) can be rewritten as the following ratios

pW(S ′)

pW(S)
=
TW(S → S ′)

TW(S ′ → S)
. (3.21)

Thanks to the utilization of this algorithm, the transition probability TW can

be redefined as a product of two distinct probabilities

TW(S → S ′) = T (S → S ′)AW(S → S ′), (3.22)

where the local transition kernel T is the conditional probability of proposing the

configuration S ′ given S, and the acceptance probability AW is the probability

to accept the proposed configuration S ′.

By inserting the redefined transition probability in Eq. (3.22) and after some

reorganization, the detailed balance in Eq. (3.21) can written as

rA(S ⇄ S ′;W) = rp(S ′,S;W) rT (S ⇆ S ′), (3.23)
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where

rp(S ′,S;W) :=
pW(S ′)

pW(S)
=

∣∣∣∣ΨW(S ′)

ΨW(S)

∣∣∣∣2, (3.24)

which is the ratio of the probability pW ,

rA(S ⇄ S ′;W) :=
AW(S → S ′)

AW(S ′ → S)
, (3.25)

which is the corrected ratio of the acceptance probability, and

rT (S ⇆ S ′) :=
T (S ′ → S)

T (S → S ′)
, (3.26)

which is the correcting ratio of the local transition kernel T in both transition

directions (S ⇆ S ′).

One should notice that the computational cost of calculating rT is generally

high due to the following choice of the transition kernel

T (S → S ′) =
(
1− δS,S′

) ∣∣∣ ⟨S|Ĥ|S ′⟩
∣∣∣∑

{S′′ |S′′ ̸=S}

∣∣∣ ⟨S|Ĥ|S ′′⟩
∣∣∣ (3.27)

which is called Hamiltonian transition rule [33, 79, 80]. However, since boson

tunneling in the canonical ensemble or boson annihilation/creation in the grand-

canonical ensemble are mostly chosen as a transition rule to propose a new bosonic

configuration, the ratio of the correcting ratio rT of the local transition kernel

T becomes one, so the corrected ratio rA of the acceptance probability can be

simplified, as follows:

rA(S ⇄ S ′;W) = rp(S ′,S;W) . (3.28)

After finalizing the definition of the ratio rA depending on a chosen transition

rule, in the ith step of the sampling process, a candidate configuration S ′ is

proposed according to the local transition kernel T (S → S ′) where S(i) = S.

If rA(S ⇄ S ′;W) ≥ 1, the next configuration S(i+1) in the Markov chain is the

candidate configuration S ′. If rA is in the interval [0, 1), S ′ is accepted as the next

configuration S(i+1) with a probability rA or rejected with a probability 1 − rA.
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Obviously, the probability for the candidate configuration S ′ to be accepted can

defined as

αW(S → S ′) := min[1, rA(S ⇄ S ′;W)] . (3.29)

At each optimization iteration, a thermalization (or warm-up or burn-in) run

is mostly necessary before generating the actual samples and carrying out mea-

surements with them because the probability distribution of the variational wave

function does not represent the actual stationary distribution at the first itera-

tions of the sampling process.

The algorithm can thus be summarized as in Algorithm 2.

Algorithm 2 Metropolis-Hastings algorithm

Require: M > 0
1: randomly initialize a configuration S(1)

2: for i = 1 to M do
3: propose a candidate configuration S ′ according to T

(
S(i) → S ′

)
under a

chosen transition rule
4: αW

(
S(i) → S ′

)
← min

[
1, rA

(
S(i) ⇄ S ′;W

)]
5: r ∼ U [0, 1)

6: if r ≤ αW

(
S(i) → S ′

)
then

7: S(i+1) ← S ′

8: else
9: S(i+1) ← S

10: end if
11: end for

3.4 Optimization

To find out the ground-state wave functions, the variational network parameters

require an optimization process. For this, a gradient descent algorithm is utilized

usually, as follows:

Wk →Wk − η Ck(W), (3.30)
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where the learning rate η is a configurable hyperparameter used to determine the

step size at each optimization step of the gradient descent algorithm, and Ck(W)

is the derivative of the cost function with respect to kth variational network

parameter. Here, the cost function is the variational energy defined below〈
Ĥ
〉

= ⟨Eloc⟩ =
⟨ΨW |Ĥ|ΨW⟩
⟨ΨW |ΨW⟩

≥ Eg, (3.31)

where Eloc is the local energy, i.e. the local estimator of the Hamiltonian, as

follows:

Eloc(S;W) :=
∑
{S′}

⟨S|Ĥ|S ′⟩ ΨW(S ′)

ΨW(S)
=
⟨S|Ĥ|ΨW⟩
⟨S|ΨW⟩

. (3.32)

With MCMC, the variational energy is approximated as shown below

E(W) :=
〈
Ĥ
〉
MC

=
1

M

M∑
i=1

Eloc

(
S(i);W

)
. (3.33)

Each optimization step needs the differentiation of the variational energy with

respect to each variational network parameter, i.e. the energy gradients gk. How-

ever, calculating the energy gradients varies depending on the parametrization of

the variational wave function. For convenience, the subscript MC is dropped in

the rest of this thesis even if MCMC is used to calculate an expectation value.

3.4.1 Energy gradients

If the real-valued variational wave function, i.e. ΨW(S) ∈ R, is parameterized

by real-valued network parameters, i.e. Wk ∈ R, the energy gradient is

gk(W) :=
∂

∂Wk

〈
Ĥ
〉

=
∂

∂Wk

(
⟨ΨW |Ĥ|ΨW⟩
⟨ΨW |ΨW⟩

)
(3.34)

= 2

∑
{S},{S′}

[
⟨S|Ĥ|S ′⟩ΨW(S ′) ∂Wk

ΨW(S)
]

∑
{S′′} Ψ2

W(S ′′)
(3.35)

−2 ⟨ΨW |Ĥ|ΨW⟩
∑

{S} [ΨW(S) ∂Wk
ΨW(S)][∑M

{S′′} Ψ2
W(S ′′)

]2 .
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By introducing the derivative of the logarithm of the wave function with respect

to the network parameters

Ok(S;W) :=
∂

∂Wk

ln |ΨW(S)| = 1

ΨW(S)

∂ΨW(S)

∂Wk

, (3.36)

which can be rewritten in terms of the an operator as follows:

Ok(S;W) = ⟨S|Ôk|S⟩ , (3.37)

where Ôk := ∂Wk
because

Ôk |ΨW⟩ =
∂

∂Wk

|ΨW⟩ (3.38)

=
∑
{S}

|S⟩ ∂

∂Wk

⟨S|ΨW⟩ (3.39)

=
∑
{S}

|S⟩ΨW(S)Ok(S;W) (3.40)

=
∑
{S}

|S⟩ ⟨S|ΨW⟩Ok(S;W) (3.41)

=

∑
{S}

|S⟩Ok(S;W) ⟨S|

 |ΨW⟩ , (3.42)

and by substituting the local energy defined in Eq. (3.32), the energy gradient

becomes

gk(W) = 2
∑
{S}

pW(S)Eloc(S;W)Ok(S;W) (3.43)

−2 ⟨Eloc⟩
∑
{S}

pW(S)Ok(S;W)

= 2 ⟨Eloc;Ok⟩ , (3.44)

where ⟨A;B⟩ = ⟨AB⟩ − ⟨A⟩ ⟨B⟩ is the correlation function for A and B.

If the complex-valued variational wave function, i.e. ΨW(S) ∈ C, is parame-

terized by real-valued network parameters, i.e. Wk ∈ R, the energy gradient is

similar to the result in Eq. (3.44), but now Ok ̸= O∗
k in general, so the energy

58



gradient is defined as

gk(W) :=
∂

∂Wk

〈
Ĥ
〉

=
∂

∂Wk

(
⟨ΨW |Ĥ|ΨW⟩
⟨ΨW |ΨW⟩

)
(3.45)

=

∑
{S},{S′}

[
⟨S|Ĥ|S ′⟩ΨW(S ′) ∂Wk

Ψ∗
W(S)

]
∑

{S′′} |ΨW(S ′′)|2
(3.46)

+

∑
{S},{S′}

[
Ψ∗

W(S ′) ⟨S ′|Ĥ|S⟩ ∂Wk
ΨW(S)

]
∑

{S′′} |ΨW(S ′′)|2

−⟨ΨW |Ĥ|ΨW⟩
∑

{S} [ΨW(S) ∂Wk
Ψ∗

W(S)][∑M
{S′′} |ΨW(S ′′)|2

]2
−⟨ΨW |Ĥ|ΨW⟩

∑
{S} [Ψ∗

W(S) ∂Wk
ΨW(S)][∑

{S′′} |ΨW(S ′′)|2
]2

=
∑
{S}

pW(S)Eloc(S;W)O∗
k(S;W) (3.47)

−⟨Eloc⟩
∑
{S}

pW(S)O∗
k(S;W) + c.c.

= ⟨Eloc;O
∗
k⟩+ c.c. (3.48)

= 2 Re{⟨Eloc;O
∗
k⟩}, (3.49)

which can be rewritten as

gk(W) = 2 Re{fk(W)}, (3.50)

by defining so-called energy forces as

fk(W) := ⟨Eloc;O
∗
k⟩ . (3.51)

If the complex-valued variational wave function, i.e. ΨW(S) ∈ C, is parame-

terized by complex-valued network parameters, i.e. Wk = Rk + iIk ∈ C where

Rk, Ik ∈ R, the calculation of the gradients differs by the holomorphicity of the

wave function.

The holomorphicity of a function f(W) = u(W) + i v(W) ∈ C where W =

R + iI ∈ C and R, I, u, v ∈ R at a point w0 can be determined by checking
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whether it is complex differentiable at w0 ∈ C and satisfies the Cauchy-Riemann

equations at w0, as defined below

∂u

∂R

∣∣∣∣
w0

=
∂v

∂I

∣∣∣∣
w0

(3.52)

∂u

∂I

∣∣∣∣
w0

= − ∂v

∂R

∣∣∣∣
w0

, (3.53)

or, equivalently, by checking whether its derivative with respect to the complex-

conjugated parameter W∗ at w0 turns out to be zero:

∂f

∂W∗

∣∣∣∣
w0

= 0, (3.54)

with the following definition of Wirtinger derivatives [81], shown below

∂

∂W =
1

2

(
∂

∂R − i
∂

∂I

)
(3.55)

∂

∂W∗ =
1

2

(
∂

∂R + i
∂

∂I

)
. (3.56)

For holomorphic wave functions, the energy gradient can be determined by

relating the complex-valued parameters and their real and imaginary parts with

a transformation matrix J as follows:

ck :=

(
Wk

W∗
k

)
=

(
1 i

1 −i

)(
Rk

Ik

)
:= J rk, (3.57)

where the differentiation operators with respect to the vectors ck and rk can be

defined as

∂

∂ck
:=

(
∂Wk

∂W∗
k

)
(3.58)

∂

∂rk

:=

(
∂Rk

∂Ik

)
. (3.59)

These differentiation operators can also be related to each other by the follow-

ing equation
∂

∂rk

=
∂c⊤k
∂rk

∂

∂ck
= J⊤ ∂

∂ck
, (3.60)
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which also implies (
∂

∂rk

)∗

=
∂

∂rk

=

(
J⊤ ∂

∂ck

)∗

= J † ∂

∂c∗k
. (3.61)

The minimization of the variational energy can done by applying δrk :=

∂rk

〈
Ĥ
〉

at each optimization step in the parameter space R2p. To carry out

the same update in the parameter space Cp, the transformation in Eq. (3.57) can

be used, as follows:

δck := J δrk = JJ † ∂

∂c∗

〈
Ĥ
〉

= 2
∂

∂c∗

〈
Ĥ
〉
, (3.62)

which leads to

gk(W) := 2
∂

∂W∗
k

〈
Ĥ
〉
, (3.63)

where the factor 2 is usually ignored since it can be compensated by tuning the

learning rate η.

In regard of Eq. (3.63), the energy gradient is

gk(W) :=
∂

∂W∗
k

〈
Ĥ
〉

=
∂

∂W∗
k

(
⟨ΨW |Ĥ|ΨW⟩
⟨ΨW |ΨW⟩

)
(3.64)

=

∑
{S},{S′}

[
⟨S|Ĥ|S ′⟩ΨW(S ′) ∂W∗

k
Ψ∗

W(S)
]

∑
{S′′} |ΨW(S ′′)|2

(3.65)

+

∑
{S},{S′}

[
Ψ∗

W(S ′) ⟨S ′|Ĥ|S⟩ ∂W∗
k
ΨW(S)

]
∑

{S′′} |ΨW(S ′′)|2

−⟨ΨW |Ĥ|ΨW⟩
∑

{S}
[
ΨW(S) ∂W∗

k
Ψ∗

W(S)
][∑M

{S′′} |ΨW(S ′′)|2
]2

−⟨ΨW |Ĥ|ΨW⟩
∑

{S}
[
Ψ∗

W(S) ∂W∗
k
ΨW(S)

][∑
{S′′} |ΨW(S ′′)|2

]2 .

(3.66)

Since ∂W∗
k
ΨW(S) = ∂Wk

Ψ∗
W(S) = 0 for holomorphic wave functions as the
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Cauchy-Riemann equations suggest in Eq. (3.54), the energy gradient becomes

gk(W) =
∑
{S}

pW(S)Eloc(S;W)O∗
k(S;W) (3.67)

−⟨Eloc⟩
∑
{S}

pW(S)O∗
k(S;W)

= ⟨Eloc;O
∗
k⟩ (3.68)

= fk(W) . (3.69)

For a non-holomorphic wave function, another approach for differentiation is

used since the Cauchy-Riemann equations do not hold. The real and imaginary

parts of the complex-valued parameters are treated separately, which leads to

W∪ := R∪I ∈ R2p rather than W = R+ iI ∈ Cp, and rewrite the function in

terms of these combined real-valued network parameters W∪ so that ΨW∪(S) =

ΨW(S) [32, 79]. With this choice, the energy derivates result as in Eq. (3.50).

3.4.2 Zero-variance property

Throughout the optimization, the variational energy is expected to converge a

minimum value, i.e. the ground-state energy that can be unknown for some many-

body systems. To overcome this indefiniteness, the variational energy variance

can be chosen as an auxiliary convergence measure.

Ideally, if sampling is carried out from the probability distribution pW0(S) for

the ground state |ΨW0⟩ where W0 is the exact variational network parameters

for the ground-state, this state is then an eigenstate of the Hamiltonian Ĥ with

its eigenvalue E(W0) = Eg, so the local energy becomes

Eloc(S;W0) =
⟨S|Ĥ|ΨW0⟩
⟨S|ΨW0⟩

(3.70)

=
E(W0) ⟨S|ΨW0⟩
⟨S|ΨW0⟩

(3.71)

= Eg, (3.72)
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which exactly equals the ground-state energy. Thus, the variational energy vari-

ance for the ground state turns out to be

var(Ĥ) =
〈
Ĥ2
〉
−
〈
Ĥ
〉2

(3.73)

=
⟨ΨW0 |Ĥ2|ΨW0⟩
⟨ΨW0|ΨW0⟩

−
(
⟨ΨW0|Ĥ|ΨW0⟩
⟨ΨW0|ΨW0⟩

)2

(3.74)

= E2
g − E2

g = 0, (3.75)

which indicates so-called zero-variance property.

Whereas, for non-eigenstates, this variance is not zero, but a positive number

because the expectation value
〈
Ĥ2
〉

of the Hamiltonian squared Ĥ2 results as

〈
Ĥ2
〉

=
⟨ΨW |Ĥ2|ΨW⟩
⟨ΨW |ΨW⟩

=
〈
E2

loc

〉
, (3.76)

which is definitely not equal to ⟨Eloc⟩2 = [E(W)]2. Thus, in general, the varia-

tional energy variance can be written as follows:

var(Ĥ) =
〈
E2

loc

〉
− ⟨Eloc⟩2 ≥ 0 . (3.77)

The convergence to the ground state |ΨW0⟩ can also be done by differentiating

the variance with respect to each network parameter Wk instead of calculating

the energy gradient gk to obtain the ground-state energy Eg. However, it is not

guaranteed to converge to the ground state since the only state that satisfies the

zero-variance property is not the ground state, but also all excited states. That

is why utilizing the variational energy variance as a subsidiary measure is much

more favored.

3.4.3 Stochastic gradient descent

Due to the exponentially increasing size of the Hilbert space, it is preferable to

calculate and apply the energy gradient from stochastically sampled many-body

configurations. For such a case, a straightforward way to minimize the variational

energy is to utilize stochastic gradient descent (SGD) defined in Algorithm 3.
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Algorithm 3 Stochastic gradient descent (SGD)

Require: η > 0
1: repeat
2: get M sampled many-body configurations {Sj}Mj=1 with MCMC
3: for each Wk do
4: calculate gk(W) with these configurations
5: Wk ←Wk − η gk(W)
6: end for
7: until E(W) is converged to a minimum energy value within an error range

This method does not guarantee to converge to the ground-state energy. It

generally requires much more iterations than other optimization algorithms, even

if it converges.

3.4.4 ADAM: Adaptive moment estimation

Without introducing further measurements, the adaptive moment estimation

(adam) method makes it possible to develop and accelerate the energy opti-

mization by computing adaptive learning rates instead of fixed rates for each

variational network parameter as in SGD [82]. To do so, adam estimates the

first two moments of gradients with exponentially decaying gradient averages.

At each iteration, the biased first-moment estimate mk stores past energy

derivates, as follows:

m
(i)
k := β1m

(i−1)
k + (1− β1) gk

(
W (i−1)

)
, (3.78)

where β1 is the exponential decay rate of the first-moment estimate. To make mk

biased corrected, it is divided by an exponentially increasing factor determined

by both the number of iterations and β1

m̂
(i)
k :=

m
(i)
k

1− βi
1

, (3.79)

which corrects the discrepancy between ⟨mk⟩ and its true moment ⟨gk⟩.

Similarly, the biased second-moment estimate vk is made up of past squared
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energy gradients, like RMSProp [83], as shown below

v
(i)
k := β2 v

(i−1)
k + (1− β2)

[
gk

(
W (i−1)

)]2
, (3.80)

where β2 is the exponential decay rate for the second-moment estimate, so its

biased-corrected value is

v̂
(i)
k :=

v
(i)
k

1− βi
2

. (3.81)

With these definitions, the optimization update can be written as

W(i+1)
k :=W(i)

k − η
m̂

(i)
k√

v̂
(i)
k + ε+ ε

gk

(
W (i)

)
, (3.82)

where ε and ε are the small constants in the denominator of the adaptive learning

rate to avoid dividing by zero. For the initialization of adam, m
(0)
k and v

(0)
k is set

to zero. All method is summarized in Algorithm 4.

Algorithm 4 Adaptive moment estimation (adam)

Require: η, ε, β1, β2 > 0, ε ≥ 0
1: i← 0
2: (mk, vk)← (0, 0)
3: repeat
4: get M sampled many-body configurations {Sj}Mj=1 with MCMC
5: for each Wk do
6: calculate gk(W) with these configurations
7: mk ← β1mk + (1− β1) gk(W)
8: vk ← β2 vk + (1− β2) [gk(W)]2

9: m̂k ← mk/ (1− βi
1)

10: v̂k ← vk/ (1− βi
2)

11: i← i+ 1
12: Wk ←Wk − η gk(W) m̂k/

(√
v̂k + ε+ ε

)
13: end for
14: until E(W) is converged to a minimum energy value within an error range

3.4.5 Stochastic reconfiguration

Canonical gradient descents as first-order optimization methods such as SGD

and adam optimize variational parameters in the steepest-descent direction in

65



a Euclidean space, so the optimization update is carried out with the following

distance (for convenience, the real and imaginary parts of the variational param-

eters are accepted as they are separated, so it is assumed that all the variational

parameters are real valued)

∥δW∥2 =
∑
k

(δWk)2, (3.83)

which is the same for each parameter. This approach has some problems. It can

require excessively many iterations for convergence to the ground-state energy

that is only generally guaranteed. The reason is that such gradient descents

are unaware of the non-Euclidean geometry of the variational network parameter

space, so even an infinitesimally small change in these parameters could cause an

utterly divergent variational energy.

A solution to this problem is to move on the parameter space under considera-

tion of its geometry to find optimal variational parameters, which can be done by

using the natural gradient descent [84]. It is a second-order optimization method

that updates the variational parameters in the steepest-descent direction in a

Riemannian space. For such a case, the distance turns out to be different from

Eq. (3.83), as follows:

∥δW∥2 =
∑
k,k′

skk′(W) δWk′ δWk, (3.84)

where skk′ is the quantum Fisher information metric. The distance of the canon-

ical steepest descent in Eq. (3.83) can be recovered by setting skk′(W) = δkk′ .

With this metric, the natural gradient descent for the minimization of varia-

tional energy can be shown as

W(i+1)
k =W(i)

k −
∑
k′

s−1
kk′

(
W (i)

)
fk′
(
W (i)

)
, (3.85)

which is also called the stochastic reconfiguration (SR) [30, 32, 33]. It can be

derived by solving the imaginary time evolution of the variational wave function

in the variational network parameter space, which gives δW as a function of δτ .
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The imaginary time evolution of the variational wave function at a time τ by

a time step δτ is carried out by

|ΨW(τ + δτ)⟩ = e−δτĤ |ΨW(τ)⟩ ≈
(
Î− δτĤ

)
|ΨW(τ)⟩ , (3.86)

which can be written as the first-order Taylor expansion of the wave function

since the time step δτ is infinitesimal. Here, the aim is to determine δW , so the

wave function needs to be expanded around each δWk in the first order, as follows

(from now on, it is assumed that each network parameter is complex valued and

the wave function is holomorphic):

|ΨW+δW(τ)⟩ = |ΨW(τ)⟩+
∑
k

(
δWk

∂

∂Wk

+ δW∗
k

∂

∂W∗
k

)
|ΨW(τ)⟩ (3.87)

= |ΨW(τ)⟩+
∑
k

δWk Ôk |ΨW(τ)⟩ , (3.88)

which is only valid for a normalized wave function, whereas no NQS ansatz is

normalized. Thus, it is redefined by introducing a zeroth-order factor δW0 to the

Taylor series in Eq. (3.88) for normalization, which becomes

|ΨW+δW(τ)⟩ = δW0 |ΨW(τ)⟩+
∑
k

δWk Ôk |ΨW(τ)⟩ . (3.89)

By matching these two expansions in Eqs. (3.86) and (3.89), a new approxi-

mated equality arises

δW0 |ΨW⟩+
∑
k ̸=0

δWk Ôk |ΨW⟩ ≈
(
Î− δτĤ

)
|ΨW⟩ . (3.90)

To find the made-up normalization factor δW0, the state ⟨ΨW (τ)|
⟨ΨW (τ)|ΨW (τ)⟩ and

Eq. (3.90) are multiplied, which results as

δW0 +
∑
k ̸=0

δWk ⟨Ok⟩ = 1− δτ ⟨Eloc⟩ , (3.91)

where δW0 can be substituted as follows

δW0 = 1− δτ ⟨Eloc⟩ −
∑
k ̸=0

δWk ⟨Ok⟩ . (3.92)
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By inserting Eq. (3.92), Eq. (3.90) becomes∑
k ̸=0

δWk

(
Ôk − ⟨Ok⟩

)
|ΨW⟩ = −δτ

(
Ĥ − ⟨Eloc⟩

)
|ΨW⟩ , (3.93)

which does not depend on δW0 anymore.

To obtain {δWk}k ̸=0, the state
⟨ΨW (τ)|Ô∗

k′
⟨ΨW (τ)|ΨW (τ)⟩ and Eq. (3.90) are multiplied,

which gives ∑
k ̸=0

δWk ⟨O∗
k′ ;Ok⟩ = −δτ ⟨Eloc;O

∗
k′⟩ . (3.94)

By setting the metric sk′k := ⟨O∗
k′ ;Ok⟩, Eq. (3.94) turns out to be∑

k ̸=0

sk′k(W) δWk = −δτfk′(W), (3.95)

which can be rewritten as a matrix-vector multiplication

S δW = −δτF , (3.96)

where S = {sk′k} is the quantum Fisher matrix, δW is the vector ( δW1 ··· δWp )⊤

and F = ( f1 ··· fp )⊤ is the energy force vector. Thus, δW as a function of the

time step δτ can be substituted by multiplying Eq. (3.96) by the inverse of S

δW = −δτS−1F . (3.97)

From now on, the infinitesimal time step δτ corresponds to the learning rate

η in MCMC, so

δW = −ηS−1F , (3.98)

or it can be rewritten explicitly

δWk = −η
∑
k′ ̸=0

s−1
kk′(W) fk′(W) . (3.99)

SR algorithm is summarized in Algorithm 5.

To look into how the variational energy is affected with such an update, its

first-order Taylor expansion can be calculated around δW

E(W + δW) ≈ E(W) +
∑
k ̸=0

(
δWk

∂E

∂Wk

+ δW∗
k

∂E

∂W∗
k

)
, (3.100)
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Algorithm 5 Stochastic reconfiguration (SR)

Require: η > 0
1: repeat
2: get M sampled many-body configurations {Sj}Mj=1 with MCMC

3: calculate F = ( f1 ··· fp )⊤ and S = {⟨O∗
k′ ;Ok⟩} with these configurations

4: determine S−1 by solving −ηF = S δW for δW
5: W ←W − ηS−1F
6: until E(W) is converged to a minimum energy value within an error range

so the energy difference due to the update δW is

∆E(W) := E(W + δW)− E(W) (3.101)

∆E(W) = −η
∑
k,k′ ̸=0

[
s−1
kk′(W) fk′(W) f ∗

k (W) + c.c.
]

(3.102)

= −2η
∑
k,k′ ̸=0

Re
{
s−1
kk′(W) fk′(W) f ∗

k (W)
}
, (3.103)

which indicates that the variational energy decreases monotonically without con-

sidering stochastic noises [32] since S is a positive-definite matrix when the num-

ber of samples is finite.

For wave functions of real-valued parameters and non-holomorphic wave func-

tions, the quantum Fisher information metric skk′ and energy forces fk become

skk′(W) = Re{⟨O∗
k;Ok′⟩}, (3.104)

fk(W) = Re{⟨Eloc;O
∗
k⟩}, (3.105)

which leads to

∆E(W) = −η
∑
k,k′ ̸=0

s−1
kk′(W) fk′(W) fk(W) < 0 . (3.106)

Under consideration of stochastic noises, some eigenvalues of the Fisher matrix

S that are close or equal to zero could cause such noises to increase when inverting

the matrix. Thus, the invertibility of S can be ensured by adding a damping

factor λ to S. With this regularization, the quantum Fisher information matrix

at the ith optimization step is written as

S(i) → S(i) + λ(i) I, (3.107)
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where λ(i) is defined as max(λ0b
i, λmin), and (λmin, λ0, b) is chosen as, for example,

(10−4, 100, b = 0.9) in [33].
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Chapter 4

Results

4.1 1D Bose-Hubbard model

Here, NQS are utilized for the 1D Bose-Hubbard model, which is previously

analyzed with such analytical approximations as the mean-field approach and

strong-coupling expansion in Sec. 2.1. For a total number of lattice sites Ns, the

variational energies for Ns and Ns ± 1 bosons by optimizing the network param-

eters of a chosen neural-network architecture. Then, one can use the following

expressions for the phase boundaries µ±, which are also known as the charge

gaps:

±µ±(Ns) = E(Ns ± 1, Ns)− E(Ns, Ns), (4.1)

where E(N,Ns) denotes the ground state energy as a function of the total number

of particles N and the number of lattice sites Ns.

For a start, a real-valued RBM is chosen as a neural-network architecture to

plot the phase diagram of the 1D Bose-Hubbard model for Ns = 6, 7, 8, 9. As

shown in Fig. 4.1, the results produced by the RBM ansatz with adam begin

to correlate with the strong-coupling expansion as the number of lattice sites Ns

increases. These results also capture the re-entrant behaviour. To get the results

in the thermodynamic limit, the variational energies must be calculated for large
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Ns. However, due to the definition of the RBM ansatz, an increase in Ns leads to

an exponential increase in the number of neurons in the network layers when the

maximum occupation number nmax is kept as to be equivalent to the number of

bosons N , which is the case in Fig. 4.1 for more accurate results. This causes the

computational cost to hike up vastly. To prevent this, an alternative but efficient

neural-network architecture should be chosen.
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Figure 4.1: Phase diagram of the 1D Bose-Hubbard model using the restricted
Boltzmann machine ansatz for different numbers of lattice sites Ns, compared
to the result of the strong-coupling perturbation theory (grey dashed line) and
mean-field theory (soft blue dashdot line). The error bars represent the standard
deviations of the last 200 values through iterations.

Such a candidate architecture is thus a FNN, as discussed in Sec. 3.1.2. With

the FNN ansatz, the phase diagram is plotted in Fig. 4.2 for Ns = 6, 7, 8, 9. Its

resulting phase boundaries are nearly exact with the boundaries obtained via

the RBM ansatz for the same Ns. To check what happens to these ground-

state energies for the MI state and defect states used in determining the phase
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Figure 4.2: Phase diagram of the 1D Bose-Hubbard model using the feedfor-
ward neural network ansatz for different numbers of lattice sites Ns, compared
to the result of the strong-coupling perturbation theory (grey dashed line) and
mean-field theory (soft blue dashdot line). The error bars represent the standard
deviations of the last 200 values through iterations.

boundaries in the thermodynamic limit, one can analyze the ground-state energy

per boson as a function of the inverse number of lattice sites. In Fig. 4.3, this

function is plotted for two different hopping amplitudes J/U = 0.02, 0.40 with its

linear regression. For such a small hopping amplitude as J/U = 0.02, the energy

gaps with particle-hole excitations are finite as expected since the system is more

likely in the MI phase in this limit. Similarly, this finite gap vanishes at such a

large hopping amplitude as J/U = 0.40 as the system size increases because the

phase of the system becomes the SF phase. These observations correlate with

the related phase analysis done in Secs. 2.1.1 and 2.1.2.
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Figure 4.3: Normalized variational ground-state energy per boson as a function
of the inverse number of lattice sites for two different hopping amplitudes J/U =
0.02 (left subplot) and J/U = 0.40 (right subplot), which is obtained with the
feedforward neural network ansatz. The linear lines indicate the linear regressions
on these variational ground-state energies. The error bars represent the standard
deviations of the last 200 values through iterations.

4.2 Two-leg Bose-Hubbard ladder under syn-

thetic magnetic flux

4.2.1 Strongly interacting regime

An initial benchmark for the RBM and FNN ansatzes in a two-leg Bose-

Hubbard ladder is established by focusing on the strongly interacting regime

where J/U ≪ 1 and aiming to determine the SF-MI phase boundaries under
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magnetic flux. As discussed earlier in Sec. 2.1.3.4, the Hamiltonian in Eq. (2.119)

breaks the time-reversal symmetry, necessitating the use of a complex-valued

restricted Boltzmann machine (C-RBM).
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Figure 4.4: Phase diagram of a two-leg Bose-Hubbard ladder with K/J = 1.00
and ϕ/π = 0.90 from the complex-valued RBM (green square) and FNN (orange
up-triangle) ansatzes for a system of L = 12 rungs compared with DMRG (blue
circle with line) [Keleş et al., Phys. Rev. A 91, 013629 (2015)], the strong-
coupling expansion (purple dashed line) and the mean-field Gutzwiller ansatz
(yellow dashdot line). The error bars represent the standard deviations of the
last 200 values through iterations.

Similar to the previous section, the stochastic calculation is done to determine

the phase boundaries as defined in Eq. (4.1). The resulting phase diagram in

the µ−J plane, along with the results obtained with DMRG [25], the strong-

coupling perturbation theory and the mean-field Gutzwiller ansatz, is illustrated

in Fig. 4.4. Remarkably, when J/U is small, where the mean-field Gutzwiller

ansatz offers more reliability, both C-RBM and FNN exhibit an agreement with
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DMRG, showcasing minimal statistical fluctuations. It is also noted that the

second-order strong-coupling expansion fails to correlate with other results after

J/U ≈ 0.20. As the value of J/U increases, deviations from the DMRG data

become more evident with amplified statistical fluctuations. Nevertheless, the

obtained results are still superior to the mean-field approach, demonstrating the

capacity of neural networks to capture basic correlations. Notably, the proximity

of the MI phase is expected to facilitate the emergence of more complicated

correlated phases deep within the SF phase, due to the competing effects of the

magnetic field, kinetic energy, and strong interactions [74], such as fractional

quantum Hall phases [5] and charge-density waves [85]. Therefore, this particular

region presents a promising avenue for designing innovative neural networks in

future studies, which may also find direct experimental relevance in the context of

new-generation cold-atom setups. It is important to mention that in the vicinity

of the tip of the Mott lobe, the transition follows a Berezinskii-Kosterlitz-Thouless

type driven by phase fluctuations rather than number fluctuations. Analyzing this

transition requires a different approach from Eq. (4.1), falling beyond the scope

of the present thesis [86].

4.2.2 Weakly interacting regime

The regime of weaker interactions J/U ≫ 1 outside the MI is now examined to in-

vestigate the SF phases exclusively using the FNN ansatz, demonstrating greater

accuracy in [57]. The identification of these phases involves the calculations of

site densities and currents along and across the legs. The overall normalization

for currents is based on the maximum value jc,max of the chiral current jc. In the

chiral phase, characterized by jc ≈ jc,max, and other phases where jc < jc,max, this

current is smaller.

Fig. 4.5 presents a cut along the phase diagram, specifically focusing on K/J

for fixed U/J = 0.20, and ϕ/π = 0.50. The expectation value of the chiral

current is shown for N = L = 16, and the local particle densities are displayed

for N = L = 32 in Fig. 4.6. The vortex phase (green region) exhibits gradual
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Figure 4.5: Chiral current as a function of K/J for fixed N = L = 16, U/J = 0.20,
and ϕ/π = 0.50 from the FNN ansatz (blue dot) normalized by the maximum
current jc,max = 2nJ sin(ϕ/2) = J

√
2 compared with the mean-field result for L =

32 (black line) and DMRG for L = 64 (dark-gray circle). The phase diagram has
vortex, biased-ladder, and chiral phases. The dashed lines show the approximate
phase boundaries. The error bars represent the standard deviations of the last
200 values through iterations.

growth of the chiral current, reaching a finite value significantly smaller than

jc,max. The local particle densities oscillate along the legs and are equal in the

upper and lower legs. Beyond the critical point at K/J ≈ 0.75, the chiral current

has a rapid increase to a larger value, still below jc,max. Within the intermediate

BL phase (orange region), the current continues to grow slowly, and the local

particle densities differ between the upper and lower legs but become uniform

along the legs. Another critical point occurs at K/J ≈ 1.05, indicating the

beginning of the expected chiral phase (purple region). In this phase, the chiral

current saturates close to jc,max, and the local particle densities are still uniform

along the legs, with equality between the upper and lower sites.
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The convergence of the variational energy within the BL phase turns out to

be notably challenging due to the delicate competition between the vortex and

chiral phases. In contrast, the regions around the MI, vortex and chiral phases

converged relatively quickly (within a few thousand iterations) (see Fig. 4.7), the

energy in the BL phase exhibited a slow drift, taking around 60-70 thousand

iterations for convergence. Additionally, the local particle density profiles un-

derwent substantial changes before reaching the converged BL phase. The RBM

ansatz, although not presented here, also performed poorly in this region. Future

work could focus on exploring alternative network architectures that can accu-

rately capture this region. Nevertheless, the ability of the FNN ansatz to reveal

this phase without bias underscores the remarkable potential of neural-network

quantum states in discovering novel quantum many-body phases.

To establish a benchmark, the chiral current was also calculated using the

state-of-the-art DMRG simulation for L = 64 [87]. To obtain these results, MPS

bond dimensions were increased up to 160, and 15 sweeps were performed for

each data point. In order to decrease the impact of the initial random MPS

configuration and avoid DMRG getting trapped in local minima, the value of K

was gradually increased from zero. The optimized MPS obtained for a smaller

K was used as the initial ansatz for the subsequent value K + δK. In Fig. 4.5,

it can be observed that the FNN results align with the DMRG simulation in the

vortex phase region, while the mean-field results exhibit significantly higher chiral

currents compared to these two simulations. In the chiral phase region, there is

a strong agreement among all the results. However, in the BL phase region,

the chiral currents begin to deviate more noticeably from the DMRG simulation.

This discrepancy is expected since DMRG employs open boundary conditions,

which significantly impact the chiral current due to boundary effects.
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4.3 Conclusions

The application of neural-network quantum states in this thesis focused on iden-

tifying many-body phases in the 1D Bose-Hubbard model and a two-leg Bose-

Hubbard ladder under an artificial magnetic field. For the one-dimensional case,

the resulting phase diagram correlates with the results obtained via strong-

coupling perturbation theory, validating the theoretical predictions. Additionally,

the analysis reveals energy gaps associated with particle-hole excitations, which

align with the analytical predictions. This agreement between the computational

findings and the theoretical expectations highlights the robustness and accuracy

of the proposed variational method. Moreover, the two-leg flux ladder model’s

characteristics, including strong magnetic flux, inter- and intra-leg hopping, and

on-site interactions, allow for much more competing quantum phases. This model

serves as an ideal testing ground for evaluating the capabilities of neural networks.

To address the broken time-reversal symmetry, two different neural-network ar-

chitectures are employed: the RBM ansatz with complex network parameters

and the FNN with real parameters but separated output neurons for the real

and imaginary parts of the wave function. In the regime where on-site interac-

tions dominate, both RBM and FNN ansatzes successfully describe the SF-MI

phase transition with precision comparable to the results obtained from DMRG.

In the weakly interacting regime, which features competing SF phases, the focus

was primarily on the FNN ansatz, which predicts three distinct phases: a vortex

phase characterized by modulations in local particle density and homogeneous

superflow under weak leg coupling; a chiral phase exhibiting uniform density and

leg currents in opposite directions; and a BL phase where local particle density

and SF velocities differ between legs, while the total current remains zero for all

of them. Importantly, it should be noted that these phases are obtained through

the minimization of variational energies without any bias.

This thesis showcases the suitability of a two-leg Bose-Hubbard ladder with

magnetic flux as an ideal test ground for future advancements in neural-network

quantum states. Other promising neural network architectures can be explored

to investigate several vital questions. For instance, the proximity of the MI
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phase, where the phase boundary demonstrates enhanced fluctuations, presents

an opportunity to explore strongly correlated phases [25, 88]. More sophisticated

networks, such as recently developed convolutional networks with improved ac-

curacy [49, 89], can potentially unveil these phases. Additionally, the regime

near the MI phase offers excellent prospects for experimental investigations in

next-generation quantum gas setups. Another important observation is the con-

siderable slowdown in the convergence of the neural network, particularly in the

weak interaction regime characterized by competing SF phases. This issue can

be addressed by employing alternative ansatzes. However, it is worth noting

that the FNN ansatz adequately captures the BL phase as expected. The ability

to benchmark this toy model against other powerful numerical techniques like

DMRG or quantum Monte Carlo using worm sampling [90] further enhances the

value of future studies on this system. Furthermore, the implementation of this

model in cold atom experiments, which offer a high degree of control, holds great

promise for practical realizations.
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[90] B. Capogrosso-Sansone, Ş. G. Söyler, N. Prokof’ev, and B. Svistunov, Monte

Carlo study of the two-dimensional Bose-Hubbard model, Phys. Rev. A 77,

015602 (2008).

92

http://eudml.org/doc/182642
https://doi.org/10.48550/ARXIV.1412.6980
https://arxiv.org/abs/1412.6980
https://doi.org/10.48550/ARXIV.1308.0850
https://arxiv.org/abs/1308.0850
https://doi.org/10.1162/089976698300017746
https://doi.org/10.1162/089976698300017746
https://doi.org/10.1103/physreva.90.053623
https://doi.org/10.1103/physrevb.58.r14741
https://doi.org/10.21468/scipostphyscodeb.4
https://doi.org/10.1103/physreva.94.063628
https://doi.org/10.48550/arXiv.2104.05085
https://doi.org/10.48550/arXiv.2104.05085
https://arxiv.org/abs/2104.05085
https://doi.org/10.1103/physreva.77.015602
https://doi.org/10.1103/physreva.77.015602

	Introduction
	Bose-Hubbard model
	Vanilla Bose-Hubbard model
	Mott insulator phase
	Superfluid phase
	Symmetries
	Particle number conservation
	Discrete translational symmetry
	U(1) gauge symmetry
	Time-reversal symmetry

	Mean-field theory
	Perturbation theory
	Self-consistency solution

	Strong-coupling perturbation theory

	Two-leg Bose-Hubbard ladder under an artificial magnetic flux
	Chiral phase
	Biased-ladder phase
	Vortex phase
	Gutzwiller variational approach
	Strong-coupling perturbation theory


	Neural-network quantum states
	Neural-network architectures
	Restricted Boltzmann machine
	Feedforward neural network

	Measurement of expectation values
	Sampling
	Optimization
	Energy gradients
	Zero-variance property
	Stochastic gradient descent
	ADAM: Adaptive moment estimation
	Stochastic reconfiguration


	Results
	1D Bose-Hubbard model
	Two-leg Bose-Hubbard ladder under synthetic magnetic flux
	Strongly interacting regime
	Weakly interacting regime

	Conclusions


