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Abstract
This project aims to �nd an e�cient numerical method to reproduce the recent experiment from Martin Zwier-

lein’s group [15] on Bose-Einstein condensates in an elliptically con�ned trap which results in geometric squeezing.
This requires to solve the Gross-Pitaevskii equation for rotating BECs. For this, the ground state of rotating BECs in
harmonic traps are calculated by applying the multigrid preconditioned Polak–Ribière–Polyak conjugate gradient
method as suggested in [12]. This method is tested with some analytic properties related to BECs. In the last part
of this project, reproducing the results of the related experiment is focused.
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1 Dimensionless GPE for Rotating BECs
The Hamiltonian for rotating BECs in 2D is

Ĥ “
´~2

2m �` V̂prq ` g | prq|2 ´ Ω L̂zprq (1)
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where V̂prq “ 1
2mp!2xx2 ` !2yy2q for a harmonic potential and L̂zprq “ ´i~

´

x B
By ´ y B

Bx
¯

for the z-component of
angular momentum.

The GPE for rotating BECs is
Ĥ  prq “ �  prq (2)

where the chemical potential � is

� “
x |Ĥ | y
x | y (3)

and the constraint is
x | y “ } }22 “

ż

ℝ2
| prq|2dx dy “ N . (4)

The energy functional E is

Ep q “
x |Ĥ | y ´ 1

2g| |2 x | y
x | y . (5)

For numerical purposes, all of these equations need to be dimensionless so let’s de�ne � as in Eq. (6).

� “
c

~
m!x

(6)

Let also x̃ and ỹ be as de�ned in Eq. (7) and (8), respectively.

x̃ ” x
� (7)

ỹ ” y
� (8)

The constraint in Eq. (4) becomes

x | y “
ż

ℝ2
| pr̃q|2dx̃ dỹ �2 “ N . (9)

To make Eq. (9) fully dimensionless, let  ̃ pr̃q be as in Eq. (10).

 ̃ pr̃q ” �  prq (10)

By inserting Eq. (10) into Eq. (9), the constraint becomes Eq. (11).

x ̃ | ̃y “
ż

ℝ2
| ̃ pr̃q|2dx̃ dỹ “ N (11)

To also make Ĥ dimensionless, we insert Eq. (7), (8) and (10) into Eq. (1).

Ĥ “
´~2

2m
1
�2

ˆ

B2

Bx̃2 `
B2

Bỹ2
˙

`
1
2m�2p!2x x̃2 ` !2y ỹ2q ` g 1�2 | ̃ pr̃q|

2 ` i Ω ~
ˆ

x̃ B
Bỹ ´ ỹ B

Bx̃

˙

(12)

We insert Eq. (6) into Eq. (12).

Ĥ “
´~2

2m
m!x
~

ˆ

B2

Bx̃2 `
B2

Bỹ2
˙

`
1
2m

~
m!x

p!2x x̃2 ` !2y ỹ2q ` gm!x
~
| ̃ pr̃q|2 ` i Ω ~

ˆ

x̃ B
Bỹ ´ ỹ B

Bx̃

˙

(13)

“
´~!x
2

ˆ

B2

Bx̃2 `
B2

Bỹ2
˙

`
1
2
~
!x
p!2x x̃2 ` !2y ỹ2q ` gm!x

~
| ̃ pr̃q|2 ` i Ω ~

ˆ

x̃ B
Bỹ ´ ỹ B

Bx̃

˙

(14)

Let’s divide Ĥ by ~!x and de�ne ̃̂H ”
Ĥ 
~!x , �̃ ” B2

Bx̃2 `
B2
Bỹ2 and ̃̂Lz ” ´i

´

x̃ B
Bỹ ´ ỹ B

Bx̃
¯

. Thus, we get

̃̂H “
´1
2 �̃`

1
2

˜

x̃2 `
!2y
!2x

ỹ2
¸

` g m
~2
| ̃ pr̃q|2 ´ Ω

!x
̃̂Lz . (15)
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Let 
y , g̃ and Ω̃ be as de�ned in Eq. (16), (17) and (18), respectively.


y ”
!y
!x

(16)

g̃ ” g m
~2

(17)

Ω̃ ” Ω
!x

(18)

̃̂H becomes as shown in Eq. (19) by de�ning ̃̂V ” 1
2
´

x̃2 ` 
 2y ỹ2
¯

.

̃̂H “
´1
2 �̃`

̃̂V` g̃| ̃ pr̃q|2 ´ Ω̃̃̂Lz (19)

Hence, the GPE, � and Ep q become as shown in Eq. (20), (21) and (22), respectively.

̃̂H  ̃ pr̃q “ �̃  ̃ pr̃q (20)

�̃ “
x ̃ | ̃̂H | ̃y
x ̃ | ̃y

(21)

Ẽp ̃ q “
x ̃ | ̃̂H | ̃y ´ 1

2 g̃| ̃ |2 x ̃ | ̃y
x ̃ | ̃y

(22)

We drop the tildes for convenience.

2 Fourier Pseudo-Spectral Discretization
Since �nding a solution of the GPE for rotating BECs is analytically challenging, it is more convenient to carry out
it numerically. Thus, we need to discretize the wave function  in 2D. Throughout this project, we use the Fourier
pseudo-spectral discretization based on FFTs to speed out our calculations and to simplify our notations because Ĥ 
is not sparse unlike in the �nite element method.

Let’s truncate the wave function  on a bounded domain U “ r´L, Ls2. We �x the spatial mesh sizes ℎx “
2L{Mx and ℎy “ 2L{My for two positive integers Mx and My . We de�ne xj “ ´L ` jℎx and yk “ ´L ` kℎy for
j “ 0, 1, … ,Mx ´1 and k “ 0, 1, … ,My´1. Thus, the mesh wave function �̃jk becomes the numerical approximation
of  pxj , ykq. For the Fourier space, we de�ne the discretized Fourier frequencies �p “ p�{L and �q “ q�{L for
p “ ´Mx{2, … , 0, … ,Mx{2´ 1 and q “ ´My{2, … , 0, … ,My{2´ 1. Hence,

Mx ,My “
 

pj, kq P ℕ2 | 0 ď j ď Mx ´ 1, 0 ď k ď My ´ 1
(

(23)

̃Mx ,My “
 

pp, qq P ℤ2 | ´Mx{2 ď p ď Mx{2´ 1, ´My{2 ď q ď My{2´ 1
(

(24)

xy “
!

pxj , ykq “ p´L` jℎx ,´L` kℎyq | pj, kq P Mx ,My

)

(25)

̃�� “
!

p�p , �qq “ pp�{L, q�{Lq | pp, qq P ̃Mx ,My

)

(26)

The Fourier coe�cients in the x- and y- directions are

p�̃pk “
Mx´1
ÿ

j“0
�̃jk exp

`

´i�ppxj ´ Lq
˘

(27)
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p�̃jq “
My´1
ÿ

k“0
�̃jk exp

`

´i�qpyk ´ Lq
˘

. (28)

Thus, the pseudo-spectral approximations in the x- and y- directions are

�̃jk “
1
Mx

Mx{2´1
ÿ

p“´Mx{2

p�̃pk exp
`

i�ppxj ´ Lq
˘

(29)

�̃jk “
1
My

My{2´1
ÿ

q“´My{2

p�̃jq exp
`

i�qpyk ´ Lq
˘

. (30)

By applying the operators B2
Bx2 , B2

By2 , y B
Bx and x B

By to �̃jk , we �nd out

B2

Bx2 �̃jk “
1
Mx

Mx{2´1
ÿ

p“´Mx{2
p´� 2p q p�̃pk exp

`

i�ppxj ´ Lq
˘

(31)

B2

By2 �̃jk “
1
My

My{2´1
ÿ

q“´My{2
p´�2qq p�̃jq exp

`

i�qpyk ´ Lq
˘

(32)

y B
Bx �̃jk “

1
Mx

Mx{2´1
ÿ

p“´Mx{2
i�py p�̃pk exp

`

i�ppxj ´ Lq
˘

(33)

x B
By �̃jk “

1
My

My{2´1
ÿ

q“´My{2
i�qy p�̃jq exp

`

i�qpyk ´ Lq
˘

. (34)

3 Numerical Methods
After choosing a certain type of discretization, we can attempt to �nd numerical solutions of the GPE which is the
discrete minimization problem in Eq. (35).

�g “ argmin
� P

Ep�q (35)

where  “
!

� | }�}22 “ N , Ep�q ă 8
)

.
The classical methods in [8] come from the theory of partial di�erential equations which are based on the imag-

inary time equation in Eq. (36).
B

Bt � “ ´Ĥ�� (36)

The time discretization withΔt can be done by using Forward Euler, Backward Euler, or Crank-Nicolson methods.
When Δt is small enough, Ep�q decreases; however, it does not preserve the constraint in Eq. (11).

Therefore, we need a constrained minimization method without free parameters like Δt to carry out e�cient
numerical calculations. For this, [12] suggests the following gradient methods.
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3.1 Preconditioned Gradient Method (PG)
In the preconditioned gradient method, the following update needs to be carried out for Eq. (35).

�̃n`1 “ �n ´ �nP
´

Ĥ�n�n ´ �n�n
¯

(37)

and
�n`1 “

�̃n`1
b

x�̃n , �̃ny
“

�̃n`1
}�̃n`1}2

(38)

where �n “ xĤ�n , �ny{}�n}22 “ xĤ�n , �ny{N .
Alternatively, Eq. (37) and (38) can be written like Eq. (39) as suggested in [12].

�n`1 “ cos p�nq �n ` sin p�nq
pn
?
N

}pn}2
(39)

where pn “ dn ´ ℜxdn ,�ny
N �n , dn “ ´Prn is the descent direction, rn “ Ĥ�n�n ´ �n�n is the preconditioned residual

and �n “ �n
?
N {}pn}2. Eq. (39) is equivalent to Eq. (37) and (38) only when �n is small enough.

Let’s expand �n`1 in Eq. (39) around �n “ 0.

�n`1 “
ˆ

1´ �2n
2! `…

˙

�n `
ˆ

�n ´
�3n
3! `…

˙ pn
?
N

}pn}2

“ �n ` �n
pn
?
N

}pn}2
´
�2n
2 �n ` p�3nq

(40)

and thus

Ep�n`1q “ Ep�nq `
�n
?
N

}pn}2
ℜx∇Ep�nq, pny `

1
2�

2
n

˜

∇2Ep�nqrpn , pnsN
}pn}22

´ ℜx∇Ep�nq, �ny
¸

` p�3nq

“ Ep�nq `
�n
?
N

}pn}2
ℜx∇Ep�nq, pny `

�2nN
2}pn}22

˜

∇2Ep�nqrpn , pns ´
ℜx∇Ep�nq, �ny}pn}22

N

¸

` p�3nq
(41)

[12, 14] suggest that

x∇Ep�nq, f y “
x2Ĥ�n�n , f y

N (42)

1
2∇

2Ep�nqrf , f s “
xf , Ĥ�n f y ` ℜxgn , f y

N (43)

where gn “ 2g�np��n with �np� “ ℜ p�np̄nq.
Hence, Eq. (41) becomes

Ep�n`1q “ Ep�nq `
�n
?
N

}pn}2
ℜx∇Ep�nq, pny `

�2nN
}pn}22

ˆ1
2∇

2Ep�nqrpn , pns ´
�n
N }pn}

2
2

˙

` p�3nq. (44)

Approximately,

Ep�n`1q « Ep�nq `
�n
?
N

}pn}2
ℜx∇Ep�nq, pny `

�2nN
}pn}22

ˆ1
2∇

2Ep�nqrpn , pns ´
�n
N }pn}

2
2

˙

. (45)

To minimize Ep�n`1q, we need to choose such �n value that

�n “ argmin
�

�n`1 “ argmin
�

ˆ

cos p�q �n ` sin p�q pn
?
N

}pn}2

˙

. (46)
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For this minimization, the Wolfe conditions or a line search can be applied; however, there is an easier way to do
that as suggested in [12, 14].

Let’s take the derivative of Ep�n`1q in Eq. (45) with respect to �n and make it equal to zero so that we can �nd a
local minimum of Ep�n`1q which gives Eq. (47).

�opt
n “

´ℜx∇Ep�nq, pny}pn}2
2
?
N
´

1
2∇2Ep�nqrpn , pns ´

�n
N }pn}

2
2
¯ (47)

Since the minimization requires Ep�n`1q ă Ep�nq, the obtained �n value (�opt
n ) in Eq. (47) must be a candidate

minimizer. Thus, we need to check �opt
n so that �opt

n ą 0.
Let’s check the numerator of Eq. (47).

´ℜx∇Ep�nq, pny}pn}2 “ ´ℜx∇Ep�nq, dn ´ ℜxdn , �ny�ny}pn}2
“ ´pℜx∇Ep�nq, dny ´ ℜx∇Ep�nq, ℜxdn , �ny�nyq }pn}2
“ ´pℜx∇Ep�nq, dny ´ ℜxdn , �nyℜx∇Ep�nq, �nyq }pn}2
“ ´

´

2ℜxĤ�n�n , dny ´ 2ℜxdn , �nyℜxĤ�n�n , �ny
¯

}pn}2{N

“ ´

´

2ℜxĤ�n�n , dny ´ 2�nNℜxdn , �ny
¯

}pn}2{N

“ ´

´

2ℜxĤ�n�n ,´Prny ´ 2�nNℜx´Prn , �ny
¯

}pn}2{N

“

´

2ℜxĤ�n�n , Prny ´ 2�nNℜxPrn , �ny
¯

}pn}2{N

(48)

We know x�n , rny “ xrn , �ny “ 0 and P ą 0. Then,

´ℜx∇Ep�nq, pny}pn}2 “
´

2ℜxĤ�n�n , Prny
¯

}pn}2{N
“ p2ℜxrn , Prny ` 2�nℜx�n , Prnyq }pn}2{N
“ 2ℜxrn , Prny}pn}2{N ą 0.

(49)

Therefore, if the denominator is also positive, �opt
n is positive and the energy may decrease. If it does not decrease,

we will decrease �opt
n until we get Ep�n`1q ă Ep�nq.

If the denominator is negative, we choose a small positive value for �opt
n . We apply the same procedure as above

until the energy decreases.
We repeat these steps until

"err
n “ |Ep�n`1q ´ Ep�nq| ă �" . (50)

3.2 Preconditioned Polak–Ribière–Polyak Conjugate Gradient Method (PCG)
We use nearly the same method as above except

dn “ ´Prn ` �PR
n pn´1 (51)

where
�PR
n “

xrn ´ rn´1, Prny
xrn´1, Prn´1y

(52)

which is the Polak–Ribière–Polyak choice if �PRn ą 0. Else, the PG method will be restarted once.
If �PRn ą 0, we need to apply a slightly di�erent minimization method. In this method, it is not guaranteed that

the numerator of �opt
n in Eq. (47) is positive. Thus, if the numerator is positive, we choose �opt

n as in Eq. (47) without
checking the denominator and apply the same step-size control as in the PG. If not, we restart the PG method once.

3.3 Preconditioners
Using preconditioners in the PG and PCG methods decreases computational cost. Hence, we need to choose them
carefully so that these iterative methods converge faster.
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Algorithm 1: The Preconditioned Gradient Method (PG)
n Ð 0
while not "errn ă �" do
�n Ð xĤ�n�n , �ny{N
rn Ð Ĥ�n�n ´ �n�n
dn Ð ´Prn
pn Ð dn ´ ℜxdn ,�ny

N �n
if
´

1
2∇2Ep�nqrpn , pns ´ �n}pn}22

¯

ą 0 then
�opt
n Ð

´ℜx∇Ep�nq,pny}pn}2
2
?
Np 12∇2Ep�nqrpn ,pns´

�n
N }pn}

2
2q

else
�opt
n Ð ´ℜx∇Ep�nq, pny}pn}2

end if
while not Ep�n`1p�opt

n qq ă Ep�nq or not �opt
n ă � do

�opt
n Ð �opt

n {2
end while
�n Ð �opt

n
�n`1 Ð cos p�nq �n ` sin p�nq pn

?
N

}pn}2n Ð n ` 1
end while

Algorithm 2: The Preconditioned Polak–Ribière–Polyak Conjugate Gradient Method (PCG)
n Ð 0
apply the PG method once
n Ð 1
while not "errn ă �" do
�n Ð xĤ�n�n , �ny{N
rn Ð Ĥ�n�n ´ �n�n
�PRn Ð

xrn´rn´1,Prny
xrn´1,Prn´1y

if �PRn ď 0 then
�n Ð 0
apply the PG method once

else
�n Ð �PRn
dn Ð ´Prn ` �npn´1
pn Ð dn ´ ℜxdn ,�ny

N �n
if ´ℜx∇Ep�nq, pny}pn}2 ą 0 then
�opt
n Ð

´ℜx∇Ep�nq,pny}pn}2
2
?
Np 12∇2Ep�nqrpn ,pns´

�n
N }pn}

2
2q

while not Ep�n`1p�opt
n qq ă Ep�nq or not �opt

n ă � do
�opt
n Ð �opt

n {2
end while
�n Ð �opt

n
�n`1 Ð cos p�nq �n ` sin p�nq pn

?
N

}pn}2
else

apply the PG method once
end if

end if
n Ð n ` 1

end while
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3.3.1 Kinetic Energy Preconditioner

Firstly, [12] suggests the following preconditioner which uses only the kinetic energy term in the GPE

P� “
ˆ

�� ´
1
2�

˙´1
(53)

where
�� “ �̃n “

1
N

ż

ℝ2

ˆ1
2�
˚
n��n ´ V̂|�n|2 ` g|�n|4

˙

dx dy. (54)

3.3.2 Potential Energy Preconditioner

Secondly, it suggests the following preconditioner which uses the potential energy term

PV “
´

�V ` V̂` g|�n|2
¯´1

(55)

where �V “ �̃n .

3.3.3 Combined Preconditioner

By combining these two preconditioners symmetrically, we get

PC “ P1{2V P�P1{2V . (56)

We use this preconditioner instead of P� or PV throughout this project. Thus we call the PCG with this precon-
ditioner PC as the PCGC.

3.4 Multigrid PCGC Method
Since small �xed mesh sizes – ℎx and ℎy – (or big grid number My ˆMx ) increase computational cost enormously,
we need to �nd another approach for the ground state to converge faster. Instead, we will use a multigrid approach
as in Algorithm 3.

Algorithm 3: The Multigrid PCGC Method
given pinitial and pend
p Ð pinitial
given �p0 on p

xy where Mx “ My “ 2p
while p ă pend do

run Algorithm 2 with the initial state �p0 and get �pg
interpolate �pg at p`1

yx and get �p`1g
p Ð p ` 1
�p0 Ð �pg

end while

4 Comparisons with the Analytical Properties
To examine the multigrid PCGC method, the following analytical properties related to the GPE can be used.
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4.1 Non-Interacting Case in a Rotating Trap
In the case of g “ 0 and N “ 1, [9] exactly gives the probability density

|�gpx, yq|2 “
1

�axay
exp

˜

´
x2
a2x
´
y2
a2y

¸

(57)

where
a2x “

1` �`�´
�`

1

 & a2y “

1` �`�´
�´

1

 (58)

�` “
2Ω!`


 2y ´ !2` ´ Ω2 & �´ “
2Ω!´

!2´ ´ 1` Ω2 & 
 “

b

1
4 p
 2y ´ 1q2 ` 4!2

K
Ω2

Ω (59)

and
!2˘ “ !2K ` Ω2 ¯

c

1
4 p


2y ´ 1q2 ` 4!2
K
Ω2 & !2K “

1
2 p1` 
 2y q. (60)

The energy E is
E “ 1

2 p!` ` !´q. (61)

For an isotropic trap (
y “ 1), ax “ 1 and ay “ 1. Hence, E “ 1.
We take N “ 1, g “ 0, Ω “ 0.99, 
y “ 1, pinitial “ 6, pend “ 8, L “ 5, �" “ 10´12 and the initial wave function

is chosen as a normalized random state.

Figure 1: Plot of the non-interacting case in the rotating trap with N “ 1, g “ 0, Ω “ 0.99, 
y “ 1, pinitial “ 6,
pend “ 8, L “ 5 and �" “ 10´12.

Figure 1 and 2 con�rm that the numerical solution is the same as the wave function in Eq. (57).

4.2 Interacting Case in a Rotating Trap
In this case, we use the lowest Landau level (LLL) approximation. This approximation is only valid if the trap rotates
enough (i.e. ΩÑ 1) and the below restriction is considered.

For the comparison, [7] de�nes a reduced energy, which must be minimized as follows.

Ep�q “ ELLLp�q ´ Ω
1´ Ω “

ż

ℝ2

ˆ

px2 ` y2q|�|2 ` Λ
2 |�|

4
˙

dx dy (62)
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(a) |�gp0, yq|2 (b) |�gpx, 0q|2

Figure 2: Plots of x “ 0 and y “ 0 slices of Figure 1 with their analytical results.

where
Λ “ g

1´ Ω (63)

Both [7, 9] obtain the following density distribution for a symmetric trap (
y “ 1)

|�gpx, yq|2 “
2

�R20

ˆ

1´ x2 ` y2
R20

˙

(64)

where

R0 “
ˆ2Λ
�

˙1{4
. (65)

Then, [7] gets the following two minimized reduced energies

Emin1 “
2
?
2

3?�
?
Λ (66)

and
Emin2 “

2
?
2

3?�
?
bΛ (67)

where b “ 1.1596 is the numerical value for a triangular Abrikosov vortex lattice.
It also indicates a restriction to the LLL if

gp1´ Ωq ! 1 (68)
To see whether the restriction to the LLL approximation is valid, it should result in a big error in the numerical

simulations if gp1´ Ωq is much greater than 1.
In the numerical simulations, we use the following the initial states as suggested in [12]

�apx, yq “
1
?� exp

`

´0.5px2 ` y2q
˘

& �bpx, yq “ px ` iyq�apx, yq & �b̄px, yq “ �̄bpx, yq

�cpx, yq “
0.5p�apx, yq ` �bpx, yqq
}0.5p�apx, yq ` �bpx, yqq}2

& �c̄px, yq “ �̄cpx, yq

�dpx, yq “
p1´ Ωq�apx, yq ` Ω�bpx, yq
}p1´ Ωq�apx, yq ` Ω�bpx, yq}2

& �d̄px, yq “ �̄dpx, yq

�epx, yq “
Ω�apx, yq ` p1´ Ωq�bpx, yq
}Ω�apx, yq ` p1´ Ωq�bpx, yq}2

& �ēpx, yq “ �̄epx, yq

(69)

and we choose the calculated ground state that has the lowest energy because of the minimization problem in Eq.
(35).
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Table 1: Numerical and approximated energies for di�erent gp1´ Ωq values.

Ω gp1´ Ωq Enum ELLL1 % error ELLL2 % error
0.1 27 2.34216 2.86395 -18.22 3.07636 -23.87
0.5 15 2.34216 2.56013 -8.51 2.71844 -13.84
0.6 12 2.34182 2.44264 -4.13 2.58424 -9.38
0.7 9 2.24182 2.29577 -2.35 2.41840 -7.30
0.8 6 2.12058 2.10294 0.84 2.20307 -3.74
0.9 3 1.86371 1.82132 2.33 1.89212 -1.50
0.99 0.3 1.30273 1.28135 1.67 1.30374 -0.08

For N “ 1, g “ 30, 
y “ 1, pinitial “ 6, pend “ 8, L “ 8 and �" “ 10´12, the numerical results are as follows.
The table shows that both LLL approximations are restricted by gp1 ´ Ωq ! 1 to approximate the ground state

well. Besides, the superior is the second approximation in Eq. (67), which agrees with [7].
Moreover, let’s look at x “ 0 and y “ 0 slices of the density distribution for g “ 30 and Ω “ 0.99.

(a) |�gp0, yq|2 (b) |�gpx, 0q|2

Figure 3: Plots of x “ 0 and y “ 0 slices of the density distribution for g “ 30 and Ω “ 0.99 with their analytical
approximations.

Figure 3 shows that these slices correlate with the density distribution in Eq. (64) as expected.

4.3 Feynman Relation
In a rotating super�uid, the dependence of the number of vortices N lattice

V as a function of the rotation frequency Ω
and the average angular momentum per atom all over the condensate x�z{~y have been studied in [2, 3, 6].

The number of vortices N lattice
V can be found in the limit of a rigid-body rotation by Feynman’s rule

N lattice
V “ cnV (70)

where c is the area of condensate and nV “
2Ω
� is the mean vortex density with � “ 2�~

m .
Since c “ �R2 where R is the condensate radius,

N lattice
V “

mΩR2
~

. (71)

Moreover, it is known that x�z{~y depends on the number of vortices N lattice
V due to the lattice formation [3].

Hence, an approach to �z can lead us to �nd N lattice
V approximately as in [6].

Let’s assume that the probability density of non-normalized wave function is the mean vortex density, i.e.,
|�px, yq|2 “ nV and �z “ mΩpx2 ` y2q. The average angular momentum per atom all over the condensate can
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be found as

x�z{~y “
ş

ℝ2 |�px, yq|2p�z{~q dx dy
“

s
ş

ℝ2 |�px, yq|2 dx dy
‰

{N

“

N
ş2�
0

şR
0
`mΩ
�~

˘

´

mΩr2
~

¯

r dr d�
ş2�
0

şR
0
`mΩ
�~

˘

r dr d�

“

Nm2Ω2R4
2~2
mΩR2
~

“
NmΩR2
2~ .

(72)

Thus, Eq. (71) and (72) give the following relation

x�z{~y
N “

N lattice
V
2 . (73)

To numerically test the relation in Eq. (73), we compute the ground states for g “ 100, 
y “ 1 andΩ P r0.40, 0.95s.
The other parameters are N “ 1, pinitial “ 6, pend “ 9, L “ 10 and �" “ 10´12.

Concerning Feynman’s relation, the relation in Eq. (73) can be tested by counting vortices for each rotation
frequency Ω.

(a) Ω “ 0.40 (b) Ω “ 0.45 (c) Ω “ 0.50 (d) Ω “ 0.55 (e) Ω “ 0.60 (f) Ω “ 0.65

(g) Ω “ 0.70 (h) Ω “ 0.75 (i) Ω “ 0.80 (j) Ω “ 0.85 (k) Ω “ 0.90 (l) Ω “ 0.95

Figure 4: Plots of the ground state density |�px, yq|2 for g “ 100, 
y “ 1 and Ω P r0.40, 0.95s.

Figure 5 show that the numerical results su�ciently con�rm Eq. (73). A slight discrepancy appears possibly due
to the inhomogeneous density.

Another problem in Figure 5 is that the calculation of x�z{~y is made by the numerical results so it is not an exact
comparison of numerical and theoretical results. There are some theoretical approximations as in [11], however,
they are only valid for a combination of a harmonic oscillator plus optical lattice.

5 Geometric Squeezing in a Rotating BEC
In 2019, Martin Zwierlein’s group have experimentally observed geometric squeezing in rotating BECs which results
in the LLL [15]. For this, they �rst prepare a ground state of rotating BEC of 23Na atoms in a TOP trap and then
apply the saddle potential V̂S at Ω̃ “ 1.

To simulate this system, we need to reduce the 3D GPE to a 2D GPE e�ectively so that we can determine dimen-
sionless parameters. With these parameters, we �nd the ground state and then make the state evolve in time with
the time-splitting spectral method (TSSP) [5, 8] after applying V̂S .
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Figure 5: Plots of N lattice
V vs. Ω and x�zy vs. Ω for N “ 1, g “ 100 and 
y “ 1.

5.1 Reduction of the 3D GPE to a 2D GPE
Since the experiment is carried out with a strongly interacting Bose gas, we can use the Thomas-Fermi approximation
to determine the 2D coupling constant (�2) approximately.

The Thomas-Fermi approximation in 3D suggests that the wave function for �3 " 1 can be taken as [5, 10]

�̃TF
g pr̃q “

$

&

%

c

�̃TFg ´
̃̂V3pr̃q

�3 , if ̃̂V3pr̃q ď �̃TF
g

0, otherwise
(74)

where

�̃TF
g “

1
2

ˆ15�3
y
z
4�

˙2{5
, (75)

̃̂V3pr̃q “
1
2
´

x̃2 ` 
 2y ỹ2 ` 
 2z z̃2
¯

(76)

and
�3 “

4�asNa
� . (77)

By supposing that we deal with a disk-shaped condensate with small height i.e., 
y « 1 and 
z " 1 [5], the 3D
GPE becomes a reduced GPE which equals

�̃ ̃2px̃ , ỹq “ ´
1
2Δ ̃2px̃ , ỹq `

̃̂V2px̃ , ỹq ̃2px̃ , ỹq ` �2| ̃2px̃ , ỹq|2 ̃2px̃ , ỹq (78)

where
ż

ℝ2
| ̃2px̃ , ỹq|2 dx̃ dỹ “ 1, (79)

̃̂V2px̃ , ỹq “
1
2
´

x̃2 ` 
 2y ỹ2
¯

(80)

and
�2 “ �3

ż

ℝ
| ̃3pzq|4dz̃. (81)

For condensates with strong repulsive interaction, [5] gives  ̃3pz̃q as

 ̃3pz̃q «
d

ż

ℝ2
|�̃TFg pr̃q|2 dx̃ dỹ . (82)
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After inserting Eq. (82) into Eq. (81), we �nd [5]

�2 “ �3
ż

ℝ
| ̃3pzq|4dz̃. (83)

Because the de�ned constraint in Eq. (11) is not as in Eq. (79), �2 will be di�erent from g̃ in Eq. (17). It turns out
that

�2 “ N g̃ (84)
Hence, the constraint value N and the coupling constant g̃ in our simulations are

N “ pNaq
4{5 (85)

and

g̃ “ 5
7

ˆ 4�
15
y

˙1{5ˆ
z�3
Na

˙4{5
. (86)

5.2 Finding the Ground State
The parameters of the experiment are given explicitly in [15]. To �nd the ground state, we need to make these
parameters dimensionless.

They are Na “ 8.1ˆ 105, m “ 3.818ˆ 10´26 kg [13], as “ 3.307 nm [1], !x “ !y “ 2� ˆ 88.6Hz, !z “
?
8!x

[10] and Ω “ 0.8!x . They correspond to N “ p8.1ˆ 105q4{5, 
y “ 1, 
z “
?
8, g̃ “ 6.552ˆ 10´2 and Ω̃ “ 0.8. In

addition to these, we also need to de�ne a bounded domain U “ r´L, Ls2, pinitial, pend and �" . Considering the given
Thomas-Fermi radius of 21 µm « 9.428� , L “ 20 is an appropriate choice because the major radius of the condensate
increases and its minor radius decrease during the squeezing process. We also choose pinitial, pend and �" as 6, 9 and
10´12, respectively. We drop the tildes for convenience.

By initializing the multigrid PCGC method with the initial wave functions in Eq. (69), we �nd that the initial
wave �a gives the state that has the lowest energy, i.e., a feasible ground state for those parameters as shown in
Table 2.

Table 2: Calculated energies of the ground state forN “ p8.1ˆ 105q4{5, 
y “ 1, 
z “
?
8, g “ 6.552ˆ 10´2,Ω “ 0.8,

L “ 20, pinitial “ 6, pend “ 9 and �" “ 10´12 with the initial wave functions in Eq. (69).

�a �b �b̄ �c �c̄ �d �d̄ �e �ē
Ep�q 14.6124 14.6133 14.6124 14.6130 14.6126 14.6126 14.6129 14.6124 14.6127

CPU time (s) 2288.48 3783.61 2123.76 2549.59 1979.57 1868.03 1760.75 1868.49 1671.87

5.3 Applying the Saddle Potential V̂S at Ω “ 1
In the experiment, the next step is to apply an additional potential – the saddle potential V̂S

V̂S “
1
2"px

2 ´ y2q (87)

where " is the trap ellipticity, which is taken as 0.125 at Ω “ 1 for a time duration of 0.4{� (� “ "{2).
For the dynamics of the condensate, we use the time-splitting spectral method (TSSP) [5, 8]. By this method, we

solve the following time-dependent GPE

i B
Bt Ψpx, y, tq “ pĤ1 ` Ĥ2qΨpx, y, tq (88)

where Ψpx, y, tq is the 2D time-dependent wave function, Ĥ1 “ ´ 1
2Δ´ΩL̂z and Ĥ2 “ V̂2` V̂S ` g|Ψpx, y, tq|2. This

equation can be solved from t “ tn to t “ tn`1 (n = 0, 1, 2, ...) by splitting into three steps. Thus, let’s de�ne the
time step Δt “ tn`1 ´ tn ą 0 then tn “ nΔt . First, we solve

i B
Bt Ψpx, y, tq “ Ĥ1xΨpx, y, tq “

ˆ

´
1
2
B2

Bx2 ´ iΩy B
Bx

˙

Ψpx, y, tq (89)

14



Figure 6: Plot of the density function |�px, yq|2 of the ground state of rotating BEC for N “ p8.1ˆ 105q4{5, 
y “ 1,

z “

?
8, g “ 6.552ˆ 10´2, Ω “ 0.8, L “ 20, pinitial “ 6, pend “ 9 and �" “ 10´12 with the initial wave function of

�a .

for Δt , followed in solving

i B
Bt Ψpx, y, tq “ Ĥ1yΨpx, y, tq “

ˆ

´
1
2
B2

By2 ` iΩx B
By

˙

Ψpx, y, tq (90)

for the same Δt , followed in solving

i B
Bt Ψpx, y, tq “ Ĥ2Ψpx, y, tq “

´

V̂2 ` V̂S ` g|Ψpx, y, tq|2
¯

Ψpx, y, tq (91)

for the same Δt . By combining the splitting steps in Eq. (89), (90) and (91) with the Strang splitting [5, 8], Ψn`1jk
(discretized Ψpx, y, tn`1q) is calculated as follows

Ψ˚jk “
1
Mx

Mx{2´1
ÿ

p“´Mx{2
exp

„

´i Δt2

ˆ1
2�

2
p ` Ωy�p

˙

pΨnpk exp
`

i�ppxj ´ Lq
˘

Ψ˚˚jk “
1
My

My{2´1
ÿ

q“´My{2
exp

„

´i Δt2

ˆ1
2�

2
q ´ Ωx�q

˙

pΨ˚jq exp
`

i�qpyj ´ Lq
˘

Ψ˚˚˚jk “ exp
”

´iΔt
´

V̂2 ` V̂S ` g|Ψ˚˚jk |2
¯ı

Ψ˚˚jk

Ψ˚˚˚˚jk “
1
My

My{2´1
ÿ

q“´My{2
exp

„

´i Δt2

ˆ1
2�

2
q ´ Ωx�q

˙

pΨ˚˚˚jq exp
`

i�qpyj ´ Lq
˘

Ψn`1jk “
1
Mx

Mx{2´1
ÿ

p“´Mx{2
exp

„

´i Δt2

ˆ1
2�

2
p ` Ωy�p

˙

pΨ˚˚˚˚pk exp
`

i�ppxj ´ Lq
˘

.

(92)

We apply the TSSP in Eq. (92) to the previously calculated ground state with the parameters ofN “ p8.1ˆ 105q4{5,

y “ 1, 
z “

?
8, g “ 6.552ˆ 10´2, Ω “ 1, " “ 0.125, L “ 20, p “ 9 and Δt “ 0.001 from the time t “ 0 to

t “ 0.4{� “ 6.4.
When we continue to make the condensate evolve in time, the vortex lattice structure of condensate begins to

be randomly arranged as shown in Figure 8 and suggested in [4].

15



(a) � t “ 0 (b) � t “ 0.14 (c) � t “ 0.28 (d) � t “ 0.38

(e)

Figure 7: (a-d) plots of the state density |Ψpx, y, tq|2 of squeezed condensate at the time � t “ 0, 0.14, 0.28 and 0.38; (e)
plot of time evolution of the major and minor of cloud radii R˘ scaled by �B “

a

~{p2m!xq not by � “
a

~{pm!xq.
We use MATLAB’s Image Processing Toolbox to determine these radii. The dashed lines are the exponential �ts
Aexpp˘� tq as suggested in [15] in which A is a free parameter chosen as the average of the major and minor radii
at � t “ 0.

(a) � t “ 0.40 (b) � t “ 0.45 (c) � t “ 0.50 (d) � t “ 0.55 (e) � t “ 0.60

Figure 8: Plots of the state density |Ψpx, y, tq|2 of squeezed condensate at the time � t “ 0.40, 0.45, 0.50, 0.55 and 0.60.

6 Conclusion
Numerically solving non-linear equations like the Gross-Pitaevskii equation is a time-consuming process with most
methods [8], especially for rotating Bose-Einstein condensates. In addition to high computational cost, they may be
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unsuccessful to �nd the ground state due to the existence of many local minima in energy. Hence, we prefer to use the
multigrid preconditioned Polak–Ribière–Polyak conjugate gradient method [12] which is more e�cient and easy-
to-apply compared with those. With this method, we can �nd a feasible ground state of Bose-Einstein condensates
much easier and faster even in the case of Ng " 1 and/or ΩÑ 1 as shown in Section 4. Since the aim of this project
is to reproduce the results of the experiment on the geometric squeezing in a Bose-Einstein condensate conducted
by Martin Zwierlein’s research group, we �rst try to calculate the ground state. Due to making the approximation of
2D coupling constant g by reducing the 3D Gross-Pitaevskii equation to 2D as in Section 5.1, the number of vortices
in the numerical result turns out to be higher than the one in the experiment.

After getting a similar ground state, a new potential, namely, the saddle potential is applied at Ω “ 1 for a while
by using the time-splitting spectral method [5, 8]. The numerical result indicates that squeezing occurs in both the
lattice structure and cloud shape of the condensate as expected in [15]. We also observe the oscillations in the cloud
radii and the breakdown of the vortex lattice structure as suggested in the experiment.

For future work, one can focus on the slight inconsistency in the number of vortices. This problem may be solved
by �nding a more proper way to approximate the 2D coupling constant for 3D systems.
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