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Abstract

This project aims to calculate the phase diagram of the 1D Bose-Hubbard model using
the suggested method for quantum many-body problems in Carleo et al. [5], based on
neural network quantum states. For this case, our arti�cial neural network is a restricted
Boltzmann machine (RBM). Before focusing on the RBM, we discuss the Bose-Hubbard
model. Then, we introduce the RBM and its ansatz. To optimize the RBM ansatz, we
use a variant of the stochastic gradient descent called the Root Mean Square Propagation
(RMSProp) [7] with the Metropolis-Hastings algorithm and automatic di�erentiation [5].
As a result, we obtain the phase diagram of the 1D Bose-Hubbard model, which is coherent
with the results of DMRG [1].
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1 Bose-Hubbard Model
The Bose-Hubbard model describes spinless bosons’ system on an optical lattice, which can
be considered repulsive interacting atoms at low temperatures. The Hamiltonian of the model
can be written as follows

 “ ´t
ÿ

xi,jy

´

b̂:i b̂j ` b̂:j b̂i
¯

`
U
2
ÿ

i
n̂ipn̂i ´ 1q ´ �

ÿ

i
n̂i (1)

where t is the hopping strength, U is the term of on-site interaction strength, and � is the
chemical potential that determines the number of particles in the ground state. b̂:i , b̂i , and
n̂i are the creation, annihilation, and number operators of bosons for the i-th lattice site,
respectively. The term of xi, jy means the nearest-neighbor sites.

By studying the model’s limits, we can show that the system can exist in either the Mott
insulator or super�uid phases.

1.1 Mott Insulator Phase (t ! U )
Since we can set t “ 0 for this case, the Hamiltonian becomes

MI “
U
2
ÿ

i
n̂ipn̂i ´ 1q ´ �

ÿ

i
n̂i

“
ÿ

i

ˆU
2 n̂ipn̂i ´ 1q ´ �n̂i

˙

“
ÿ

i
ℎ̂i

(2)

where ℎ̂i is the local Hamiltonian. It is clear to see that the eigenstate of ℎ̂i is the Fock state
so that

ℎ̂i |niy “
ˆU
2 n̂ipn̂i ´ 1q ´ �n̂i

˙

|niy

“

ˆU
2 nipni ´ 1q ´ �ni

˙

|niy

“ Ei |niy

(3)

where Ei is the eigenvalue of ℎ̂i .
To �nd the local occupation number n0pU , �q of the ground state (the perfect Mott insulator

state), we �rst can say that

En0 ą En0´1
U
2 n0pn0 ´ 1q ´ �n0 ą

U
2 pn0 ´ 1qpn0 ´ 2q ´ �pn0 ´ 1q

(4)

which results in �
U ą n0 ´ 1 (5)

where En0 “ min
n
En is the ground state energy.
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Figure 1: Ei{U vs. �{U for the Bose-Hubbard model with t “ 0.

Similarly, we can write the following

En0`1 ą En0
U
2 pn0 ` 1qn0 ´ �pn0 ` 1q ą U

2 n0pn0 ´ 1q ´ �n0
(6)

which results in
n0 ą

�
U . (7)

The ground state of the system (t “ 0) with n0 bosonic particles exists when

n0 ą
�
U ą n0 ´ 1 . (8)

Generally, the local occupation number n0pU , �q of the ground state can be written as
follows

n0pU , �q “
#

0 if 0 ą �
U and n “ 0

n if n ą �
U ą n ´ 1 and n P ℤ` . (9)

Therefore, this ground state has the following exact solution for the ideal case pt “ 0q [3]

|ΨMIy “

Ns
ź

i“1

1
a

n0pU , �q
´

b̂:i
¯n0pU ,�q

|0y (10)

where Ns is the number of lattice sites, and |0y is the vacuum state, which indicates that each
lattice site has the same number of particles – n0pU , �q.
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1.2 Super�uid Phase (t " U )
In the case of t " U , the Hamiltonian reduces to

SF “ ´t
ÿ

xi,jy

´

b̂:i b̂j ` b̂:j b̂i
¯

´ �
ÿ

i
n̂i (11)

which can be diagonalized only in the Fourier space by �nding the Fourier transform of the
creation and annihilation operators as follows [2]

b̂:i “
1
?Ns

ÿ

k
exp p´ipk ¨ riqq b̂:k (12)

b̂i “
1
?Ns

ÿ

k
exp pipk ¨ riqq b̂k (13)

where N is the number of particles in the system. After inserting these transformed operators
into the transformed Hamiltonian, we get [2]

SF “
ÿ

k
´p�̄k ` �q b̂:kb̂k (14)

where �̄k “ 2třd
m“1 cospkmaq and d is the number of dimensions of the lattice.

In this limit, the ground state is a Bose-Einstein condensate in which all bosonic particles
are in the state where k “ 0 [4], which can be written as

|ΨSFy “
1
?
N!

´

b̂k“0
¯N
|0y “ 1

?
N!

˜

1
?Ns

Ns
ÿ

i“1
b̂:i

¸N

|0y . (15)

1.3 Mean-Field Theory
We can trivially study the 1D Bose-Hubbard model within the mean-�eld theory.

To do so, we de�ne a 1D lattice. Then, the Hamiltonian for the m-th lattice site becomes

m “ ´t
´

b̂:mb̂m´1 ` b̂:m´1b̂m ` b̂:mb̂m`1 ` b̂:m`1b̂m
¯

`
U
2 n̂m pn̂m ´ 1q ´ �n̂m . (16)

We can simplify this Hamiltonian by setting that

� ” b̂:m´1 ” b̂m´1 ” b̂:m`1 ” b̂m`1 (17)

which is de�ned as the mean-�eld parameter so that the mean-�eld Hamiltonian MF
m turns

out to be
MF

m “ ´2�t
´

b̂:m ` b̂m
¯

`
U
2 n̂m pn̂m ´ 1q ´ �n̂m . (18)

To numerically calculate and plot the phase diagram for the 1D mean-�eld Bose-Hubbard
Hamiltonian MF

m , we �rst need to write the creation and annihilation operators as matrices.
For bosonic Fock states, these operators can be represented as the following matrices

b̂:m “

»

—

—

—

—

—

—

—

—

–

0 0 0 ⋯ 0 0 0
?
1 0 0 ⋯ 0 0 0
0

?
2 0 ⋯ 0 0 0

0 0
?
3 ⋱ ⋮ 0 0

⋮ ⋮ ⋱
?
4 ⋱ 0 0

0 0 ⋮ ⋱ ⋱ ⋱ ⋮
0 0 0 ⋯ 0

?
N 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

(19)
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b̂m “

»

—

—

—

—

—

—

—

—

–

0
?
1 0 0 ⋯ 0 0

0 0
?
2 0 ⋯ 0 0

0 0 0
?
3 ⋱ ⋯ 0

⋮ ⋮ ⋮ ⋱
?
4 ⋱ ⋮

0 0 0 ⋯ ⋱ ⋱ 0
0 0 0 0 ⋱ 0

?
N

0 0 0 0 0 ⋯ 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (20)

Secondly, we need to optimize the mean-�eld parameter � . Ideally, � must be equal to xb̂y.
Thus, with a self-consistency procedure, the optimum value of the mean-�eld parameter �opt
can be found as in Algorithm 1.

Algorithm 1: The Self-Consistency Procedure to Find �opt

�pre
opt Ð 0
�opt Ð 1
while not |�opt ´ �pre

opt | ă � do
�nd the normalized ground state |ΨGSy for �opt via the NumPy’s function of
linalg.eigh
�pre

opt Ð �opt

�opt Ð b̂ΨGS
end while

After making the mean-�eld Hamiltonian ĤMF
m dimensionless as follows

MF
m

U “ ´2� t
U
´

b̂:m ` b̂m
¯

`
1
2n̂m pn̂m ´ 1q ´ �

U n̂m , (21)

we can construct the mean-�eld phase diagram for the 1D Bose-Hubbard model as in
Figure 2.

2 Neural Network Quantum States
Carleo et al. [5] has shown that the quantum many-body problems such as the Heisenberg
model and Ising model can be solved by using an arti�cial neural network (ANN), so-called
a restricted Boltzmann machine (RBM) with a reinforcement-learning scheme. Using this
method, McBrian et al. [6] and Vargas-Calderón et al. [8] found the ground state of the 1D
Bose-Hubbard model and constructed its phase diagram.

2.1 Restricted Boltzmann Machine Ansatz for Wavefunction
In our case, we consider the Fock basis; therefore, the ground state of the 1D Bose-Hubbard
model can be written as follows [8]

|ΨGSy “
ÿ


Ψpq |npqy (22)

where  “ pn1, ⋯ , nNsq is the occupation number con�guration, ni is the bosonic occupation
number of the i-th lattice site, and |npqy “ |n1, ⋯ , nNsy is the Fock state concerning the
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Figure 2: Mean-�eld phase diagram of the 1D Bose-Hubbard model.

con�guration  . To implement  into our RBM, we subdivide  into another con�guration
called the one-hot encoding-like con�guration OHEL. This con�guration has no di�erence
from  rather than having extra neurons ni,j (or �k) to represent each occupation number.
These extra neurons are limited by nmax – the maximum number of particles in each lattice
site.

...

...

...

...

n1,1 Ñ �1
n1,2 Ñ �2

n1,nmax Ñ �nmax

nNs ,1 Ñ �pNs´1qˆnmax`1
nNs ,2 Ñ �pNs´1qˆnmax`2

nNs ,nmax Ñ �Nsˆnmax

ℎ1

ℎ2

ℎ3

ℎM
Figure 3: Restricted Boltzmann machine used in our case.

The wavefunction of Ψpq can be approximated as the RBM ansatz as follows [5]

Ψpq « ΨpOHEL;q “
ÿ

tℎk“˘1u
exp

˜Nsˆnmax
ÿ

j“1
�j�j `

M
ÿ

i“1
�iℎk `

M
ÿ

i“1

Nsˆnmax
ÿ

j“1
Wijℎk�j

¸

(23)

where  “ t�j , �i ,Wiju is the set of the parameters of the RBM, ℎk is the hidden variable,
�j and �i are the local weights for the visible and hidden layers, Wij is the interaction weight
matrix, and M is the number of hidden neurons.
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By de�nition, the wavefunction of ΨpOHEL;q can also be written as

ΨpOHEL;q “ exp
˜Nsˆnmax

ÿ

j“1
�j�j

¸

M
ź

i“1
2 cosh r�ipOHEL;qs (24)

where �ipOHEL;q is the e�ective angle

�ipOHEL;q “ �i `
Nsˆnmax
ÿ

j“1
Wij�j . (25)

2.2 Ground State Energy
To calculate the ground state energy Epq, we use the variational Monte Carlo (VMC) as
follows

Epq “ E “ ΨGSΨGS

xΨGS|ΨGSy
“

ş

Ψ˚pOHEL;q ΨpOHEL;q dSOHEL
ş

|ΨpOHEL;q|2 dSOHEL

“

ş

Ψ˚pOHEL;q ΨpOHEL;q
ΨpOHEL;q  ΨpOHEL;q dSOHEL

ş

|ΨpOHEL;q|2 dSOHEL

“

ş

|ΨpOHEL;q|2  ΨpOHEL;q
ΨpOHEL;q dSOHEL

ş

|ΨpOHEL;q|2 dSOHEL

“

ş

|ΨpOHEL;q|2 ElocpOHEL;q dSOHEL
ş

|ΨpOHEL;q|2 dSOHEL

“

ż

�pOHEL;q ElocpOHEL;q dSOHEL

(26)

where  is the 1D Bose-Hubbard Hamiltonian, ElocpOHEL;q “  ΨpOHEL;q
ΨpOHEL;q is the so-called

local energy, and �pOHEL;q “ |ΨpOHEL;q|2
ş

|ΨpOHEL;q|2 dSOHEL
is the probability density.

By sampling |ΨpOHEL;q|2, we can approximate Epq statistically as follows

Epq « ElocMH “
1
P

P
ÿ

i“1
Elocppiq;q (27)

where ⋯MH is the notation of the average over the sampling of |ΨpOHEL;q|2 with the
Metropolis-Hastings algorithm, P is the number of samples, and piq is the one-hot encoding-
like con�guration of the i-th sample.

2.3 Metropolis-Hastings Algorithm
To carry out this sampling, we use the Metropolis-Hastings algorithm as in Carleo et al. [5]. It
is a Markov Chain Monte Carlo algorithm to draw random samples from a probability distri-
bution iteratively. Direct sampling is laborious so that the formed Markov chain is expected
to converge to the chosen probability distribution without depending on the �rst sample.

We generate a Markov chain of the one-hot encoding-like con�gurations p1q Ñ p2q Ñ
⋯Ñ pPq as explained in Algorithm 2.
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Algorithm 2: The Metropolis-Hastings Algorithm for the 1D Bose-Hubbard Model
randomly initialize p1q
for i P t2, 3, ⋯ , Pu do

 1 Ð pi´1q
generate a random integer m P r1, Nss
nm Ð the occupation number of the m-th lattice site in pi´1q
generate a random integer n1 P r0, nmaxs z tnmu
set the occupation number of the m-th lattice site in  1 to n1
R Ð U p0, 1q
if R ă Ψp 1;q

Ψppi´1q;q
2
then

piq Ð  1
else

piq Ð pi´1q
end if

end for

2.4 Optimization of RBM Ansatz
Since the parameters of RBM are randomly initialized, we need to optimize our RBM ansatz
to obtain the ground state wavefunction. It is also known that the ground state is the one that
has the lowest energy in a given system, so the cost function that will be minimized is the
expectation value of energy.

Carleo et al. [5] state that this optimization can be achieved with stochastic gradient de-
scent. For each iteration k, we �rst do a sampling of |Ψp ;kq|2 with the Metropolis-Hastings
algorithm and calculate the local energy for each sample in the Markov chain. Next, we de-
termine k`1 by calculating the variational derivatives k,pp ;kq with respect to the p-th
parameter of k of Ψp ;k,pq

k,pp ;kq “
B

Bk,p
ln rΨp ;kqs “

1
Ψp ;kq

BΨp ;kq

Bk,p
. (28)

For the network parameters, the derivatives are

k,�j p ;kq “
1

Ψp ;kq

BΨp ;kq

B�j
“ �j (29)

k,�ip ;kq “
1

Ψp ;kq

BΨp ;kq

B�i
“ tanh r�ip ;kqs (30)

k,Wij p ;kq “
1

Ψp ;kq

BΨp ;kq

BWij
“ �j tanh r�ip ;kqs . (31)

Thus, the gradient of the energy with respect to the p-th parameter can be approximated
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as follows [5]

BEpkq

Bk,p
« Gppkq “ Eloc ˚k,pMH ´ ElocMH ˚k,pMH

“
1
P

P
ÿ

i“1
Elocppiq;kq˚k,pppiq;kq ´ Epkq

1
P

P
ÿ

i“1
˚k,pppiq;kq

“
1
P

P
ÿ

i“1

“

Elocppiq;kq ´ Epkq
‰

˚k,pppiq;kq

(32)

so k`1,p turns out to be
k`1,p “k,p ´ �Gppkq (33)

with a �xed learning rate �.
To optimize the RBM ansatz e�ciently, we can apply the Root Mean Square Propagation

(RMSProp) [7] to obtain an adaptive learning rate �pk, pq

�pk, pq “ �
a

sppkq ` �
(34)

where � is a small cuto� value, and

sppkq “ 
sppk´1q ` p1´ 
 qGppk´1q
2 (35)

with the exponential decay rate 
 so that

k`1,p “k,p ´ �pk, pqGppkq . (36)

2.5 Results
We choose Ns “ 4, nmax “ 4, M “ 6, P “ 1500, � “ 0.01, 
 “ 0.9, and � “ 10´8.

2.5.1 Ground State Energy

As seen in Figure 4, the variational ground state energy with the RBM converges to its exact
value after a while.

2.5.2 Phase Diagram

To plot the phase diagram, we need to choose an order parameter to distinguish the phase
transitions. The variance of the on-site number operator Varpn̂iq is appropriate for this be-
cause it is expected to be zero for the Mott insulator phase and greater than zero for the
super�uid phase.

Once again, we calculate this value by using the samples produced by the Metropolis-
Hastings algorithm as follows

Varpn̂iq «
řP

j“1 n2i ppjqqΨppjq;q
2
´

”

řP
j“1 nippjqqΨppjq;q

2ı2

řP
j“1 Ψppjq;q

2 . (37)

We plot a grid of the averages of Varpn̂1q resulted in the last 300 sampling steps by using
1500 samples for each iteration. The size of the grid is 33ˆ 33. The produced plot is in Figure
5.
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Figure 4: Variational energy of the 1D Bose-Hubbard model as a function of the iteration k.
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Figure 5: Phase diagram of the 1D Bose-Hubbard model, calculated by the given RBM in
Section 2.5.

3 Conclusions
In this project, we successfully tested whether a restricted Boltzmann machine can be trained
to determine the ground state wavefunction of the 1D Bose-Hubbard model. Even though
some noises appear in the phase diagram (see Figure 5) due to the low-resolution grid and
small sample size, we can calculate it, which has better results than the mean-�eld theory.
Thus, it is more consistent with the numerical data from DMRG [1].

Firstly, as we say in Section 2.1, we prefer to use the one-hot encoding-like con�guration
rather than the typical occupation number con�guration since we have more �uctuations
in the variational energy convergence with the typical one. Those �uctuations may occur
because of the small number of neurons in the visible layer of the RBM. Even if we try to
increase the number of neurons in the hidden layer, they keep appearing.

Secondly, the Metropolis-Hastings algorithm provides us a sample from the Fock space
instead of the whole Fock space to carry out all calculations without dealing with many Fock
states. In our case, it is not so valid due to time restrictions; however, when Ns and nmax
increase, the sampling turns out to be more signi�cant.

Finally, optimizing the RBM ansatz is one of the crucial points in this whole process.
Thanks to the automatic di�erentiation, we can e�ciently compute the gradients. Besides,
the RMSProp allows us to update the learning rate so that the ground state energy converges
faster. Instead of the RMSProp, Carleo et al. [5] use the stochastic recon�guration method.
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For future work, one can determine the phase boundaries in Figure 5 di�erently, such
as applying the neural network quantum states to the canonical ensemble of the 1D Bose-
Hubbard model.
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